Skip to main content
Log in

The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Recently discovered neocortical equivalents in anamniotes and certain patterns of interspecific variability in brain organization provide new insights into evolutionary and ontogenetic mechanisms of development. The new data suggest that nervous systems become more complex, not by one system invading another, but by a process of parcellation that involves the selective loss of connections of the newly formed daughter aggregates and subsystems. The parcellation process is reflected in the normal ontogenetic development of the CNS in a given species and can be manipulated, to a certain extent, by deprivation or surgically induced sprouting.

The parcellation theory allows certain predictions about the range of variation of a given system at all levels of analysis including the cellular and aggregate levels. For example, the interspecific variability in organization of cortical columns, thalamic nuclei, cortical areas and tectal layers can be explained. The findings, summarized here, suggest that diffuse, undifferentiated systems existed in the beginning of vertebrate evolution and that during the evolution of complex behaviors, and analytical capacities related to these behaviors, a range of patterns of neural systems evolved that relate to these functions. One principle underlying the growth, differentiation and multiplication of neural systems appears to be the process of parcellation as defined by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäckström K (1924) Contributions to the forebrain morphology in selachians. Acta Zool 5:123–240

    Google Scholar 

  • Belekhova MG (1968) Subcortico-cortical relationships in birds. Neurosci Trans 2:195–203

    Google Scholar 

  • Benevento LA, Ebner FF (1971) The contribution of the dorsal lateral geniculate nucleus to the total pattern of thalamic terminations in striate cortex of the Virginia opossum. J Comp Neurol 143:243–260

    Google Scholar 

  • Blackstad TW (1970) Electron microscopy of Golgi preparations for the study of neuronal relations. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. New York Heidelberg Berlin, pp 186–216

  • Blakemore C, Sluyters RC van (1975) Innate and environmental factors in the development of the kitten's visual cortex. J Physiol Lond 248:663–716

    Google Scholar 

  • Bowsher D (1973) Brain, Behaviour and Evolution. Brain, Behav Evol 8:386–396

    Google Scholar 

  • Butler AB, Northcutt RG (1978) New thalamic visual nuclei in lizards. Brain Res 149:469–476

    Google Scholar 

  • Campbell CBG, Ebbesson SOE (1969) The optic system of a teleost: Holocentrus re-examined. Brain, Behav Evol 2:415–430

    Google Scholar 

  • Campbell CBG, Hodos W (1970) The concept of homology and the evolution of the nervous system. Brain, Behav, Evol 3:353–367

    Google Scholar 

  • Chung SH, Gaye RM, Stirling RV (1973) Abnormal visual function in Xenopus following stroboscopic illumination. Nature, Nerv, Biol 246:186–189

    Google Scholar 

  • Cohen DH, Duff TA, Ebbesson SOE (1973) Electro-physiological identification of a visual area in shark telencephalon. Science 182:492–494

    Google Scholar 

  • Cotman CW, Matthews D, Taylor D, Lynch G (1973) Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc Nat Acad Sci, Wash 70:3473–3477

    Google Scholar 

  • Devor M, Schneider GE (1975) Neuroanatomical plasticity: The principle of conservation of total axonal arborization. In: Vital-Durand F, Jeannerod M (eds) Aspects of neural plasticity/plasticite nerveuse, Vol 43:191–200

  • Diamond IT, Hall WC (1969) Evolutions of neocortex. Science 164:251–268

    Google Scholar 

  • Distel Hj, Ebbesson SOE (1975) Efferent projections of the thalamus in the monitor lizard. Proceedings of the Society for Neuroscience

  • Distel H, Ebbesson SOE (1980) Habenular projections in the monitor lizard (Varanus bengalensis). Exp Brain Res, submitted

  • Distel H, Holländer H (1980) Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. J Comp Neur 192:505–518

    Google Scholar 

  • Donoghue JP, Kerman KL, Ebner FF (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J Comp Neurol 183:647–664

    Google Scholar 

  • Dürsteler MR, Blakemore C, Garey IJ (1979) Projections to the visual cortex in the golden hamster. J Comp Neurol 183:185–209

    Google Scholar 

  • Ebbesson SOE (1966) Ascending fiber projections from the spinal cord in the Tegu lizard (Tupinambis nigropunctatus). Anat Rec 154:341–342

    Google Scholar 

  • Ebbesson SOE (1967a) Ascending axon degeneration following hemisection of the spinal cord in the Tegu lizard (Tupinambis nigropuntatus). Brain Res 5:178–206

    Google Scholar 

  • Ebbesson SOE (1967b) Retinal projections in two species of sharks. Anat Rec 157:238

    Google Scholar 

  • Ebbesson SOE (1968) Retinal projections in two teleost fishes (Opsanus tau and Gymnothorax funebris). An experimental study with silver impregnation methods. Brain, Behav Biol I:134–154

    Google Scholar 

  • Ebbesson SOE (1969) Brainstem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann NY Acad Sci 167:30–101

    Google Scholar 

  • Ebbesson SOE (1970a) On the organization of central visual pathways in vertebrates. Brain, Behav Evol 3:178–194

    Google Scholar 

  • Ebbesson SOE (1970b) The selective silver-impregnation of degenerating axons and their synaptic endings in nonmammalian species. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, New York Heidelberg Berlin, pp 132–161

    Google Scholar 

  • Ebbesson SOE (1972a) A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behav Evol 6:75–91

    Google Scholar 

  • Ebbesson SOE (1972b) New insights into the organization of the shark brain. Comp Biochem Physiol 42A, 121–129

    Google Scholar 

  • Ebbesson SOE (1976) Morphology of the spinal cord. In: Llinas R, Precht W (eds) Frog neurobiology, Springer Verlag, pp 679–706

  • Ebbesson SOE (1978) Somatosensory pathways in lizards: the identification of the medial lemniscus and related structures. In: MacLean PD, Greenberg N (eds) Lizard neurology and behavior. DHEW Publication No. (ADM) 77-491, pp 91–104

  • Ebbesson SOE (1979) On the organization of the telencephalon in elasmobranchs. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 1–16

    Google Scholar 

  • Ebbesson SOE (1980) Thalamotelencephalic pathways in the squirrel fish (Holocentrus sp). Submitted to Cell Tissue Res

  • Ebbesson SOE, Heimer L (1968) Olfactory bulb projections in two species of sharks. Anat Rec 160

  • Ebbesson SOE, Ramsey JS (1968) The optic tracts in two species of sharks. Brain Res 8:36–53

    Google Scholar 

  • Ebbesson SOE, Rubinson K (1969) A simplified Nauta procedure. Physiol and Behav 4:281–282

    Google Scholar 

  • Ebbesson SOE, Voneida TJ (1969) The cytoarchitecture of the pallium in the Tegu lizard (Tupinambis nigropunctatus). Brain, Behav Evol 2:431–466

    Google Scholar 

  • Ebbesson SOE, Heimer L (1970) Projections of the olfactory tract fibers in the nurse shark (Ginglymostoma cirratum). Brain Res 17:47–55

    Google Scholar 

  • Ebbesson SOE, Rubinson K (1971) Macrophotography of histological sections. Physiol and Behav 7:261–263

    Google Scholar 

  • Ebbesson SOE, Schroeder DM (1971) Connections of the nurse shark's telencephalon. Science 173:254–256

    Google Scholar 

  • Ebbesson SOE, Jane JA, Schroeder DM (1972) An overview of major interspecific variations in thalamic organization. Brain, Behav Evol 6:92–130

    Google Scholar 

  • Ebbesson SOE, Campbell CBG (1973) The organization of cerebellar efferents in the nurse shark (Ginglymostoma cirratum). J Comp Neurol 152:233–255

    Google Scholar 

  • Ebbesson SOE, Northcutt RG (1975) Neurology of anamniotic vertebrates. In: Masterton et al. (eds) Evolution of brain and behavior

  • Ebbesson SOE, Vanegas H (1976) Projections of the optic tectum in two teleost species. J Comp Neurol 165:161–180

    Google Scholar 

  • Ebbesson SOE, Goodman DC (1980) The organization of ascending spinal projections in Caiman crocodilus, Submitted to Cell Tissue Res

  • Ebbesson SOE, Hodde K (1980) Ascending spinal systems in the nurse shark (Ginglymostoma cirratum). Submitted to Cell Tissue Res

  • Ebbesson SOE, Ito H (1980) The bilateral retinal projections in the black piranah (Serrasalmus niger). Submitted to Cell Tissue Res

  • Ebbesson SOE, Meyer DL (1980) The visual system of the guitar fish (Rhinobatos productus). Cell Tissue Res (in press)

  • Ebbesson SOE, O'Donnel D (1980) Retinal projections in the electric catfish (Malapterurus electricus). Submitted to Cell Tissue Res

  • Ebbesson SOE, Schroeder DM, Butler AB (1975) The Golgi method and the revival of comparative neurology. In: Santini M (ed) Golgi centennial symposium. Raven Press, New York

    Google Scholar 

  • Ebner FF (1967) Afferent connections to neocortex in the opossum (Didelphis virginiana). J Comp Neurol 129:241–268

    Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann NY Acad Sci 167:241–257

    Google Scholar 

  • Ebner FF, Myers RE (1962) Commissural connections in the neocortex of monkey. Anat Rec 142:229

    Google Scholar 

  • Ebner FF, Myers RE (1965) Distribution of the corpus callosum and anterior commissure in cat and raccoon. J Comp Neurol 124:353–366

    Google Scholar 

  • Fernstrom RC (1958) A durable Nissl stain for frozen and paraffin sections. Stain Technol 330:175–176

    Google Scholar 

  • Fuller PM (1974) Projections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Brain, Behav Evol 10:157–169

    Google Scholar 

  • Graeber RC, Ebbesson SOE (1972a) Retinal projections in the lemon shark (Negaprion brevirostris). Brain, Behav Evol 5:460–477

    Google Scholar 

  • Graeber RC, Ebbesson SOE (1972b) Visual discrimination learning in normal and tectal ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem and Physiol 42:131–139

    Google Scholar 

  • Graeber RC, Ebbesson SOE, Jane JA (1973) Visual discrimination in sharks without optic tectum. Science 180:413–415

    Google Scholar 

  • Graeber RC, Schroeder DM, Jane JA, Ebbesson SOE (1978) Visual discriminations following parietal ablations in the nurse sharks (Ginglymostoma cirratum). J Comp Neurol 180:325–344

    Google Scholar 

  • Guillery RW (1972) Experiments to determine whether retino-geniculate axons can form translaminar collateral sprouts in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 146:407–419

    Google Scholar 

  • Hall WC, Ebner FF (1970) Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinus hypomelas) and the turtle (Pseudemus scripta). Brain, Behav Evol 3:135–154

    Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1922) Functional factors in the morphology of the forebrain of fishes. In: Libro en honor de D. Santiago Ramon y Cajal. Vol 1, pp 143–204

  • Herrick CJ (1924) An introduction to neurology, 3rd edition. W B Saunders Company, Philadelphia

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander, University of Chicago Press, Chicago

    Google Scholar 

  • Hickey TL (1975) Translaminar growth of axons in the kitten dorsal lateral geniculate nucleus following removal of one eye. J Comp Neurol 161:359–382

    Google Scholar 

  • Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat's striate cortex. J Physiol 165:559–658

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059

    Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Phil Trans R Soc Lond 278:377–409

    Google Scholar 

  • Hunt Sp, Webster KE (1972) Thalamo-hyperstriate interrelations in the pigeon. Brain Res 44:647–651

    Google Scholar 

  • Innocenti GM (1979) Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat. In: Russel JS, van Hof MW, Berlucchi G (eds) Structure and function cerebral commissures. MacMillan Press, London

    Google Scholar 

  • Ito H, Butler AB, Ebbesson SOE (1980) An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from the retina, telencephalon and the contralateral tectum in a teleost, Holocentrus rufus. J Comp Neurol 191:639–660

    Google Scholar 

  • Jane JA, Schroeder DM (1971) A comparison of dorsal column nuclei and spinal afferents in the European hedgehog (Erinaceus europaeus). Exp Neurol 30:1–17

    Google Scholar 

  • Johnston JB (1911) The telencephalon of selachians. J Comp Neurol 21:1–113

    Google Scholar 

  • Joseph BS, Whitlock DG (1968) Central projections of selected spinal dorsal roots in anuran amphibians. Anat Rec 160:279–288

    Google Scholar 

  • Kalil RE (1972) Formation of new retino-geniculate connections in kittens after removal of one eye. Anat Rec 172:339–340

    Google Scholar 

  • Källén B (1951) On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci. J Comp Neurol 95:397–447

    Google Scholar 

  • Källén B (1962) Embryogenesis of brain nuclei in the chick telencephalon. Ergebn Anat Entwicklungsgesch 36:62–82

    Google Scholar 

  • Kappers Ariëns CU, Huber GC, Crosby EC (1936) The Comparative Anatomy of the Nervous System of Vertebrates Including Man. Mac Millan, New York

    Google Scholar 

  • Karten HJ (1963) Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc XVI Internat Cong Zool 2:23

    Google Scholar 

  • Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann NY Acad Sci 167:164–179

    Google Scholar 

  • Karten HJ, Nauta WJH (1968) Organization of retino-thalamic projections in the pigeon and owl. Anat Rec 160:373

    Google Scholar 

  • Karten HJ, Hodos W, Natua WJH, Revzin AM (1973) Neural connections of the visual “Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278

    Google Scholar 

  • Kicliter E, Northcutt RG (1975) Ascending efferents to the telencephalon of ranid frogs: an anterograde degeneration study. J Comp Neurol 161:239–254

    Google Scholar 

  • Kokoros JJ, Northcutt RG (1977) Telencephalic efferents of the tiger salamander Ambystoma tigrinum tigrinum (Green). J Comp Neurol 173:613–628

    Google Scholar 

  • Kratz KE, Spear PD (1976) Effects of visual deprivation and alterations in binocular competition on responses of striate cortex neurons in the cat. J Comp Neurol 170:141–152

    Google Scholar 

  • Lende RA (1969) A comparative approach to the neocortex: localization in montremes, marsupials and insectivores. Ann NY Acad Sci 167:262–276

    Google Scholar 

  • Liu CM, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiat 79:46–61

    Google Scholar 

  • Long DM, Bodenheimer TS, Hartman JF, Klatzo I (1968) Ultrastructural features of the shark brain. Am J Anat 122:209–236

    Google Scholar 

  • Loy R, Lynch G, Cotman CW (1977) Development of afferent lamination in the fascia dentata of the rat. Brain Res 121:229–244

    Google Scholar 

  • Lund RD (1978) Development and Plasticity of the Brain. Oxford University Press, New York

    Google Scholar 

  • Lund RD, Lund JS (1971) Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science 171:804–807

    CAS  PubMed  Google Scholar 

  • Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (Area 17) of the cat. A comparison with area 17 of the macaque monkey. J Comp Neurol 184:599–618

    Google Scholar 

  • Lynch G, Matthews DA, Mosko S, Parks T, Cotman C (1972) Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res 42:311–318

    Google Scholar 

  • Lynch GS, Mosko S, Parks T, Cotman CW (1973) Relocation and hyperdevelopment of the dentate gyrus commissural system after entorhinal lesions in immature rats. Brain Res. 50:174–178

    Google Scholar 

  • Lynch G, Stanfield B, Parks T, Cotman CW (1974) Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat. Brain Res. 69:1–11

    Google Scholar 

  • Maturana HR, Lettvin JY, McCullock WS, Pitts WH (1959–1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–176

    Google Scholar 

  • Mehler WR (1969) Some neurological species differences — A posteriori. Ann N Y Acad Sci 167:424–468

    Google Scholar 

  • Miceli D, Peyrichoux J, Repárant J (1975) The retino-thalamo-hyperstriated pathway in the pigeon (Columba livia). Brain Res 100:125–131

    Google Scholar 

  • Mihailović J, Perisić M, Bergonzi R, Meier RE (1974) The dorsolateral thalamus as a relay in the retino-Wulst pathway in pigeon (Columba livia). An electrophysiological study. Exp Brain Res 21:229–240

    Google Scholar 

  • Nakamura Y, Mizuno N, Konishi A, Sato M (1974) Synaptic reorganization of the red nucleus after chronic deafferentation from cerebellorubral fibers: an electron microscopic study in the cat. Brain Res 82:298–301

    Google Scholar 

  • Nieuwenhuys R, Bodenheimer TS (1966) The diencephalon of the primitive bony fish (Polypterus) in the light of the problem of homology. J Morphol 118:415–450

    Google Scholar 

  • Northcutt RG (1969) Discussion of the preceding paper. Ann NY Acad Sci 167:180–185

    Google Scholar 

  • Northcutt RG (1972) Afferent projections of the telencephalon of bull frog (R. catesbeiana). Anat Rec 172:374

    Google Scholar 

  • Northcutt RG (1974) Some histochemical observations on the telencephalon of the bull frog (Rana catesbeiana Shaw). J Comp Neurol 157:379–390

    Google Scholar 

  • Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bull frog (Rana catesbeiana). J Morphol 145:251–268

    Google Scholar 

  • Papez JW (1936) Evolution of the medial geniculate body. J Comp Neurol 64:41–61

    Google Scholar 

  • Pettigrew JD (1974) The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. J Physiol Lond 237:49–74

    Google Scholar 

  • Rakic P (1976a) Prenatal genesis of connections subserving ocular dominance in the Rhesus monkey. Nature, Lond

  • Rakic P (1976b) Prenatal development of the visual system in the Rhesus monkey. Phil Trans R Soc Lond B278:245–260

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox Technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in Neuroanatomy. Springer, New York Heidelberg Berlin, pp 32–55

    Google Scholar 

  • Rezak M, Benevento LA (1979) A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (Area 17) in the macaque monkey. Brain Res 167:19–40

    Google Scholar 

  • Royce GJ, Northcutt RG (1969) Olfactory bulb projections in the tiger salamander (Ambystoma tigrinum) and the bull frog (Rana catesbeiana). Anat Rec, 163:254

    Google Scholar 

  • Scalia F (1972) The projections of the accessory olfactory bulb in the frog. Brain Res 36:409–411

    Google Scholar 

  • Scalia F, Ebbesson SOE (1971) The central projection of the olfactory bulb in a teleost (Gymnothorax funebris). Brain, Behav Evol 4:376–399

    Google Scholar 

  • Scalia F, Halpern M, Knapp H, Riss W (1968) The efferent connexions of the olfactory bulb in the frog: a study of degenerating fibers. J Anat 103:245–262

    Google Scholar 

  • Schroeder DM, Ebbesson SOE (1971) Diencephalic projections to the telencephalon of the nurse shark. Anat Rec 169:421

    Google Scholar 

  • Schroeder DM, Ebbesson SOE (1974) Non-olfactory telencephalic afferents in the nurse shark (Ginglymostoma cirratum). Brain, Behav Evol 9:121–155

    Google Scholar 

  • Schroeder DM, Vanegas H, Ebbesson SOE (1980) The cytoarchitecture of the optic tectum of the squirrelfish, Holocentrus. J Comp Neurol 191:337–352

    Google Scholar 

  • Schneider GE (1969) Two visual systems. Science 163:895

    Google Scholar 

  • Schneider GE (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain, Behav Evol 8:73–109

    Google Scholar 

  • Schneider GE, Jhaveri SR (1974) Neuroanatomical correlates of spared or altered function after early brain lesions in the newborn hamster. In: Stein DG, Rosen JJ, Butters N (eds) Plasticity and recovery of function in the central nervous system. Acad Press, New York, pp 65–109

    Google Scholar 

  • Singer W, Tretter F (1976) Receptive-field properties and neuronal connectivity in striate and parastriate cortex of contour-deprived cats. J Neurophysiol 39:613–630

    Google Scholar 

  • Steward O, Cotman CW, Lynch GS (1973) Re-establishment of exectrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral entorhinal cortex. Exp Brain Res 18:396–414

    Google Scholar 

  • Ulinsky PS (1978) A working concept of the organization of the anterior dorsal ventricular ridge. In: Greenberg N, MacLean PD (eds) Behavior and Neurology of Lizards, NIMH, pp 121–132

  • Ulinsky PS (1979) Tectal efferents in the banded water snake (Natrix sipedon). J Comp Neurol 173:251–274

    Google Scholar 

  • Vanegas H, Ebbesson SOE (1973) The retinal projections in the perchlike teleost (Eugerres plumieri). J Comp Neurol 151:331–358

    Google Scholar 

  • Vanegas H, Ebbesson SOE (1976) Telencephalic projections in two teleost species. J Comp Neurol 165:181–196

    Google Scholar 

  • Vanegas H, Ebbesson SOE (1979) Projections of the teleostean telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon Plenum (in press)

  • Vesselkin NP, Agayan AL, Nomokonova LM (1971) A study of thalamo-telencephalic afferent systems in frogs. Brain, Behav Evol 4:295–306

    Google Scholar 

  • Voneida T, Ebbesson SOE (1969) On the origin and distribution of axons in the pallial commissures in the Tegu lizard (Tupinambis nigropunctatus). Brain, Behav Evol 2:467–481

    Google Scholar 

  • Welker MI, Johnson Jr. JI, Pubols Jr. BH (1964) Some morphological and physiological characteristics of the somatic sensory system in racoons. Am Zoologist 4:75–94

    Google Scholar 

  • Wolff JR (1979) Some morphogenetic aspects of the development of the central nervous system. In: Immelmann K, Barlow GW, Main M, Petrinovich L (eds) Behavioral development. The Bielefeld Interdisciplinary Project, Cambridge University Press, New York

    Google Scholar 

  • Zimmer J (1973a) Extended commissural and ipsilateral projections in postnatally deentorhinated hippocampus and fascia dentata demonstrated in rats by silver impregnation. Brain Res 64:293–311

    Google Scholar 

  • Zimmer J (1973b) Changes in the Timm sulfide silver staining pattern of the rat hipposcampus and fascia dentata following early postnatal deafferentation. Brain Res. 64:313–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbesson, S.O.E. The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res. 213, 179–212 (1980). https://doi.org/10.1007/BF00234781

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234781

Key words

Navigation