Skip to main content
Log in

β-glucuronidase gene expression and mRNA stability in oat protoplasts

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Protoplasts derived from oat (Avena sativa L.) suspension culture cells (7 days after subculturing) were electroporated with plasmid DNA containing the Escherichia coli uidA gene encoding the ß-glucuronidase reporter enzyme. Consistently high enzyme activity was observed with electroporation conditions of 500 μF and 1125 volts/cm. Enzyme activity and mRNA accumulation time courses were determined. The maximum enzyme activity was detected at 24 hours after electroporation, while the maximum mRNA level was detected at 12 hours after electroporation. ß-glucuronidase mRNA was in vitro synthesized with and without a 5′ methylated cap and then electroporated into protoplasts. Only capped mRNA produced significant enzyme activity. By electroporating radiolabeled, in vitro synthesized mRNA, the ß-glucuronidase mRNA half-life was estimated to be ∼35 minutes in oat protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

ß-glucuronidase

mRNA:

messenger RNA

ICP:

insecticidal crystal proteins

OCS:

octopine synthase

CAT:

chloramphenicol acetyltransferase

nt:

nucleotide

kb:

kilobase

MSOD3:

Murashige and Skoog media with zero 2,4-dichlorophenoxy acetic acid and 3% sucrose

MU:

4-methyl umbelliferone; ATA: aurintricarboxylic acid

References

  • Atwater JA, Wisdom R, Verma IM (1990) Annu. Rev. Genet. 24: 519–541

    Google Scholar 

  • Bradford M (1976) Anal. Biochem. 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brault V, Miller WA (1992) Proc. Natl. Acad. Sci. 89: 2262–2266

    Google Scholar 

  • Callis J, Fromm M, Walbot V (1987a) Genes and Devel. 1: 1183–1200

    Google Scholar 

  • Callis J, Fromm M, Walbot V (1987b) Nucl. Acids Res. 15(14): 5823–5831

    Google Scholar 

  • Cotton JLS, Ross CW, Byrne DH, Colbert JT (1990) Plant Mol. Biol. 14: 707–714

    Google Scholar 

  • Davey MR, Rech EL, Mulligan BJ (1989) Plant Mol. Biol. 13: 273–285

    Google Scholar 

  • Dickey LF, Gallo-Meagher M, Thompson WF (1992) EMBO J. 11(6): 2311–2317

    Google Scholar 

  • Drummond DR, Armstrong J, Colman A (1985) Nucl. Acids Res. 13: 7375–7393

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985). ProcNatl. Acad. Sci. 82: 5824–5828

    Google Scholar 

  • Fromm M, Callis J, Taylor LP, Walbot V (1987) Methods Enzymology 153: 351–366

    Google Scholar 

  • Gallie DR, Lucas WJ, Walbot V (1989) The Plant Cell 1: 301–311

    Google Scholar 

  • Gallie DR (1991) Genes and Devel. 5: 2108–2116

    Google Scholar 

  • Goodall GJ, Filipowicz W (1990) Plant Mol. Biol. 14: 727–733

    Google Scholar 

  • Harrold S, Genovese C, Kobrin B, Morrison SL, Milcarek C (1991) Anal. Biochem. 198: 19–29

    Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil DK, Fraley RT (1987) Plant Cell Reports 6: 265–270

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987a) EMBO J. 6(13): 3901–3907

    Google Scholar 

  • Jefferson RA (1987b) Plant Mol. Biol. Rep. 5(4): 387–405

    Google Scholar 

  • Luehrsen KR, Walbot V (1991) Mol. Gen. Genet. 225: 81–93

    Google Scholar 

  • Maas C, Schaal S, Werr W (1990) EMBO J. 9(11): 3447–3452

    Google Scholar 

  • Moldave K (1985) Annu. Rev. Biochem. 64: 115–121

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497

    Google Scholar 

  • Murray EE, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M (1991) Plant Mol. Biol. 16: 1035–1050

    Google Scholar 

  • Okamuro JK, Goldberg RB (1989) In: Marcus A (ed) The Biochemistry of Plants: A Comprehensive Treatise (vol, 15) Academic Press, Inc., New York, pp 1–82

    Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B, Potrykus I (1984) EMBO J. 3: 2717–2722

    Google Scholar 

  • Peterhans A, Swapan KD, Karabi D, Goodall G, Potrykus I, Paszkowski J (1990) Mol. Gen. Genet. 222: 361–368

    Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Mol. Gen. Genet. 199: 183–188

    Google Scholar 

  • Price CA (1992) Plant Mol. Biol. Rep. 10(3): 224–228

    Google Scholar 

  • Pröls, M, Reinhard T, Schell J, Steinbiß H (1988) Plant Cell Reports 7: 221–224

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Seeley KA, Byrne DH, Colbert JT (1992) The Plant Cell 4: 29–38

    Google Scholar 

  • Silflow CD, Key JL (1979) Biochem. 18(6): 1013–1018

    Google Scholar 

  • Stoeckle MY, Hanafusa H (1989) Mol. Cell. Biol. 9: 4738–4745

    Google Scholar 

  • Vreken P, Raué HA (1992) Mol. Cell. Biol. 12: 2986–2996

    Google Scholar 

  • Wadsworth GJ, Redinbaugh MG, Scandalios JG (1988) Anal. Biochem. 172: 279–283

    Google Scholar 

  • Yisraeli JK, Melton DA (1989) Methods Enzymol. 180: 42–50

    Google Scholar 

  • Young MJ, Larkin PJ, Miller WA, Waterhouse PM, Gerlach WL (1989) J. Gen. Virol. 70: 2245–2251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. N. Beachy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgs, D.C., Colbert, J.T. β-glucuronidase gene expression and mRNA stability in oat protoplasts. Plant Cell Reports 12, 445–452 (1993). https://doi.org/10.1007/BF00234710

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234710

Key words

Navigation