Skip to main content
Log in

Integrative and self-replicating Lc vectors and their transactivation capacity in maize callus protoplasts

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The regulatory Lc gene is a member of the R gene family of maize which amongst other transcriptional activators controls anthocyanin biosynthetic genes. The availability of R locus mutants which lack anthocyanin production in all tissues offers the possibility of studying cell lineage by introducing a chimeric Lc gene into defined cells and following cell autonomous anthocyanin production. For this purpose integrative and self-replicating Lc vectors were constructed. Integrative expression vectors contained the 2.4 kbp Lc cDNA with the entire 5′ leader fused to the constitutive cauliflower mosaic virus 35S promoter with and without the maize alcohol dehydrogenase 1 intron 1 or to the mesophyll specific phosphoenolpyruvate carboxylase promoter of maize. To enhance expression and to circumvent the necessity of stable integration, extrachromosomally replicating and expressing wheat dwarf virus-Lc constructions were also designed. Both categories of expression vectors were tested in embryogenic callus-derived protoplasts of maize and were found to transactivate anthocyanin biosynthesis. Southern blot analysis indicated that the wheat dwarf virus-Lc constructions were replicating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

Adh:

alcohol dehydrogenase

BMS:

Black Mexican Sweet

CaMV:

cauliflower mosaic virus

CAT:

chloramphenicol acetyttransferase

ccc:

covalently closed circular

DGT:

direct gene transfer

ds:

double stranded

EDTA:

ethylenediamine-tetraacetic acid

FDA:

fluorescein diacetate

GUS:

β-glucuronidase

lin:

linear

nos:

nopaline synthase

NPT-II:

neomycin phosphotransferase II

oc:

open circular

PEG:

polyethylene glycol

PEPC:

phosphoenolpyruvate carboxylase

ss:

single stranded

Tris:

Tris (hydroxymethyl) aminomethane

uORF:

upstream open reading frame

UTR:

untranslated region

WDV:

wheat dwarf virus

References

  • Antonelli NM, Stadler J (1989) J. Genet. and Breed. 43: 113–122

    Google Scholar 

  • Baur M, Potrykus I, Paszkowski J (1990) Mol. Cell. Biol. 10: 492–500

    Google Scholar 

  • Bodeau JP, Walbot V (1992) Mol. Gen. Genet. 233: 379–387

    Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Genes and Development 1: 1183–1200

    Google Scholar 

  • Cavener DR, Ray SC (1991) Nucl. Acids Res. 19: 3185–3192

    Google Scholar 

  • Coe EH, Hoisington DA, Neuffer MG (1988) In: Sprague GF, Dudley J (eds) Corn and Corn Improvements, Am. Agron. Soc., Madison, WI, pp 81–258

    Google Scholar 

  • Consonni G, Geuna F, Gavazzi G, Tonelli Ch (1993) The Plant Journal 3: 335–346

    Google Scholar 

  • Damiani RD, Wessler S (1993) Proc. Natl. Acad. Sci. USA 90: 8244–8248

    Google Scholar 

  • Dellaporta SL, Greenblatt J, Kermicle JL, Hicks JB, Wessler S (1988) In: Gustafson JP, Appels R (eds) Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, New York, Plenum, pp 263–282

    Google Scholar 

  • Dellaporta SL, Moreno MA, Delong A (1991) Ac. Devel. Suppl. 1: 141–147

    Google Scholar 

  • Dooner HK, Kermicle JL (1971) Genetics 67: 427–436

    Google Scholar 

  • Dooner HK, Kermicle JL (1976) Genetics 82: 309–322

    Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Ann. Rev. Genet. 25: 173–199

    Google Scholar 

  • Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VL (1990) EMBO J. 9: 2517–2522

    Google Scholar 

  • Goff SA, Cone KC, Chandler VL (1992) Genes and Development 6: 864–875

    Google Scholar 

  • Hayees RJ, Coutts RHA, Buck KW (1989) Nucl. Acids Res. 17: 2391–2403

    Google Scholar 

  • Joshi RL, Joshi V (1991) FEBS 281: 1–8

    Google Scholar 

  • Kammann M, Matzeit V, Schmidt B, Schell J, Walden R, Gronenborn B (1991) Gene 104: 247–252

    Google Scholar 

  • Kozak M (1986) Cell 44: 283–292

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AM, Walbot V, Davis R.W (1992) Science 258: 1773–1775

    Google Scholar 

  • Lohmer S, Motto M, Salamini F, Thompson D (1993) The Plant Cell 5: 65–73

    Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Proc. Natl. Acad. Sci. USA 86: 7092–7096

    Google Scholar 

  • Ludwig SR, Wessler SR (1990) Cell 62: 849–851

    Google Scholar 

  • Ludwig SR, Bowen B, Beach L, Wessler SR (1990) Science 247: 449–450

    Google Scholar 

  • Lupotto E, Lusardi MC (1988) Maydica XXXIII: 163–177

    Google Scholar 

  • Lusardi MC, Neuhaus-Uri G, Potrykus I, Neuhaus G (1994) The Plant Journal, in press

  • Matzeit V, Schaefer S, Kammann M, Schalk HJ, Schell J, Gronenborn B (1991) The Plant Cell 3: 247–258

    Google Scholar 

  • Mòrocz S, Donn G, Nemeth J, Dudits D (1990) Theor. Appl. Genet. 80: 721–726

    Google Scholar 

  • Nelson T, Harpeter MH, Mayfield SP, Taylor WC (1984) J. Cell. Bicl. 98: 558–564

    Google Scholar 

  • Neuhaus-Url G, Neuhaus G (1993) Transgenic Research 2: 115–120

    Google Scholar 

  • Paszkowski J, Saul MW, Potrykus I (1989) In: Schell J, Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, vol 6. Molecular Biology of Plant Nuclear Genes, San Diego: Academic Press, pp 52–68

    Google Scholar 

  • Perrot-Rechenmann C, Vidal J, Brulfert J, Burlet A, Gadal P (1982) Planta 155: 24–30

    Google Scholar 

  • Perrot GH, Cone KC (1989) Nucl. Acids. Res. 17: 8003

    Google Scholar 

  • Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Nucl. Acids. Res. 14: 5857–5868

    Google Scholar 

  • Radicella JP, Turks D, Chandler VL (1991) Plant. Mol. Biol. 17: 127–130

    Google Scholar 

  • Radicella JP, Brown D, Tolar LA, Chandler VL (1992) Development 6: 2152–2164

    Google Scholar 

  • Rogers S (1991) Biotechnology 2: 153–157

    Google Scholar 

  • Roth BA, Goff SA, Klein TM, Fromm ME (1991) The plant Cell 3: 317–325

    Google Scholar 

  • Somers DA, Birnberg PR, Petersen WL, Brenner ML (1987) Plant Sci. 53: 249–256

    Google Scholar 

  • Sussex IM (1989) Cell 56: 225–229

    Google Scholar 

  • Timmermans MCP, Das OP, Messing J (1992) Nucl. Acids Res. 20: 4047–4054

    Google Scholar 

  • Toneill C, Consonni G, Dolfini SF, Dellaporta SL, Viotti A, Gavazzi G (1991) Mol. Gen. Genet. 225: 401–410

    Google Scholar 

  • Ugaki M, Ueda T, Timmermans MCP, Viera J, Elliston KO, Messing J (1991) Nucl. Acids Res. 19: 371–377

    Google Scholar 

  • Yanagisawa S, Izul K (1989) J. Biochem. 106: 982–987

    Google Scholar 

  • Zhang SB, Guo ZS, Qian YQ, Qu GP, Ca QG, Zhou YL (1990) Chinese J. Bot. 2: 18–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhaus-Url, G., Lusardi, M.C., Imoberdorf, R. et al. Integrative and self-replicating Lc vectors and their transactivation capacity in maize callus protoplasts. Plant Cell Reports 13, 564–569 (1994). https://doi.org/10.1007/BF00234512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234512

Keywords