Skip to main content
Log in

Control of Na+ and H+ transports by exocytosis/endocytosis phenomena in a tight epithelium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The relationship linking Na+ and H+ transports and exocytosis/endocytosis located in the apical membranes of the frog skin epithelium was investigated under various conditions of ion transport stimulation. The exocytosis process, indicating insertion of intracellular vesicles, which were preloaded with fluorescent FITC-dextran (FD), was measured by following the FD efflux in the apical bathing solution.

Na+ transport stimulators such as serosal hypotonic shock (replacement of serosal Ringer solution by half-Ringer or 4/5-Ringer), apical PCMPS (10−3 m) and amphotericin-B (20 μg/ml), were also found to stimulate the exocytotic rates of FD. Acidification of the epithelium by CO2 or post NH4 load, conditions which increase the proton secretion also stimulated the FD release in the apical bathing solution. On the other hand, alkalization of the epithelial cells increased the endocytosis rate. Hypotonic shock, acid load and PCMPS induced an increase in cell calcium which is probably the signal within the cell for exocytosis. In addition, quantitative spectrofluorimetric measurements of F-actin content after rhodamine-phalloidin staining, indicated a decrease in the F-actin content as a result of cell acidosis, hypotonic conditions and amphotericin additions. It is proposed that the insertion/retrieval of intracytoplasmic vesicles containing H+ pumps plays a key role in the regulation of proton secretion in tight epithelia. In addition, it is suggested that cytoskeleton depolymerization of F-actin filaments facilitates H+ pump insertion. A comparable working hypothesis for the control of Na+ transport is proposed.

This work was supported by grants from the Commissariat à l'Energie Atomique and The Centre National de la Recherche Scientifique UA 638.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of frog skin. J. Physiol. 212:195–210

    Google Scholar 

  • Arruda, J.A., Dytko, G., Talor, Z. 1990. Stimulation of H+ secretion by CO2 in turtle bladder: Role of intracellular pH, exocytosis and calcium. Am. J. Physiol. 258:R222-R231

    Google Scholar 

  • Arruda, J.A.L., Talor, Z., Dytko, C. 1988. Effects of agents that alter cell calcium and microfilaments on CO2 stimulated H+ secretion in the turtle bladder. Arch. Int. Pharmacodyn. 293:273–283

    Google Scholar 

  • Blumenthal, R. 1987. Membrane fusion. In: Current Topics in Membranes and Transport. Vol. 29:203–254. Academic, London, New York

    Google Scholar 

  • Brown, D. 1989. Membrane recycling and epithelial cell function. Am. J. Physiol. 256:F1-F12

    Google Scholar 

  • Brown, E.M., Pazoles, C.J., Creutz, C.E., Aurbach, G.D., Pollard, H.B. 1978. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. USA 75:876–880

    Google Scholar 

  • Burgoyne, R.D., Cheek, T.R. 1987. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci. Rep. 7:281–288

    Google Scholar 

  • Burgoyne, R.D. 1991. Control of exocytosis in adrenal chromaffin cells. Biochim. Biophys. Acta 1071:174–202

    Google Scholar 

  • Cannon, C., Van Adelsberg, J., Kelly, S., Al-Awqati, Q. 1985. Carbon-dioxide-induced exocytotic insertion of H+ pumps in turtle-bladder luminal membrane: role of cell pH and calcium. Nature 314:443–446

    Google Scholar 

  • Cantiello, H.F., Ausiello, D.A. 1991. Development of epithelial Na+ channels and regulation by guanine nucleotide regulatory (G) proteins and phospholipids. In: Current Topics in Membranes. D.J. Benos, editor. Vol 39, pp 395–436. Academic, London, New York

    Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G., Ausiello, D.A. 1991. Actin filaments regulate epithelial Na channel activity. Am. J. Physiol. 261:C882-C888

    Google Scholar 

  • Carasso, N., Favard, P., Bourguet, J., Jard, S. 1966. Role du flux net d'eau dans les modifications ultrastructurales de la vessie de grenouille stimulée par l'oxytocine. Journal de microscopie 5:519–522

    Google Scholar 

  • Cheek, T.R., Burgoyne, R.D. 1986. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS 207:110–114

    Google Scholar 

  • Clark, S.J., O'Brien, M.E., Ralston, G.B. 1988. The effects of p-chloromercuribenzene sulfonate on purified spectrin and actin. Biochim. Biophys. Acta 957:243–253

    Google Scholar 

  • Cooper, J.A. 1987. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:1473–1478

    Google Scholar 

  • Cornet, M., Delpire, E., Gilles R. 1987. Study of microfilament network during volume regulation process of cultured PC 12 cells. Pfluegers Arch. 410:223–225

    Google Scholar 

  • Cuthbert, A.W., Wilson, S.A. 1981. Mechanisms of the effects of acetylcholine on sodium transport in frog skin. J. Membrane Biol. 59:65–75

    Google Scholar 

  • Dick, H.J., Lindenmann B. 1975. Saturation of Na+ current into frog skin epithelium abolished by PCMPS. Pfluegers Arch. 355:R72

    Google Scholar 

  • Ding, G., Franki, N., Condeelis, J., Hays R.M. 1991. Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am. J. Physiol. 260:C9-C16

    Google Scholar 

  • Dixon, T.E., Clausen, C., Coachman, D. 1988. Constitutive and transport-related endocytotic pathways in turtle bladder epithelium. J. Membrane Biol. 102:49–58

    Google Scholar 

  • Durham, J.H., Nagel, W. 1986. Evidence for separate cellular origin of sodium and acid base transport in the turtle bladder. Am. J. Physiol. 250:C607-C616

    Google Scholar 

  • Ehrenfeld, J., Garcia-Romeu F. 1977. Active hydrogene excretion and sodium absorption through isolated frog skin. Am. J. Physiol. 233:F46-F54

    Google Scholar 

  • Ehrenfeld, J., Garcia-Romeu F., Harvey, B.J.1985. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. J. Physiol. 359:331–355

    Google Scholar 

  • Ehrenfeld, J., Lacoste, I., Harvey B.J. 1989. The key role of the mitochondria-rich cell in Na and H transport across the frog skin epithelium. Pfluegers Arch. 414:59–67

    Google Scholar 

  • Ehrenfeld, J., Lacoste, I., Harvey, B.J. 1992. Role of intracellular signals on Na/K-ATPase pump activity in the frog skin epitheliums. Biochim. Biophys. Acta 1106:197–208

    Google Scholar 

  • Ehrenfeld, J., Masoni, A., Garcia-Romeu F. 1976. Mitochondriarich cells in frog skin in transport mechanisms: morphological and kinetic studies on transepithelial excretion of methylene blue. Am. J. Physiol. 231:120–126.

    Google Scholar 

  • Englert, D.F., Perlman, R.L. 1981. Permeant anions are not required for norepinephrine secretion from pheochromocytoma cells. Biochim. Biophys. Acta 674:136–143

    Google Scholar 

  • Finkelstein, A., Zimmerberg, J., Cohen F.S. 1986. Osmotic swelling of vesicles: Its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu. Rev. Physiol. 48:163–174

    Google Scholar 

  • Forte, T.M., Machen, T.E., Forte, J.G. 1977. Ultrastructural changes in oxyntic cells associated with secretory functions: A membrane recycling hypothesis. Gastroenterology 73:941–955

    Google Scholar 

  • Garcia-Romeu, F., Ehrenfeld, J. 1975. Chloride transport through the non short-circuited isolated skin of Rana esculenta. Am. J. Physiol. 228(3):845–849

    Google Scholar 

  • Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 68(2):309–373

    Google Scholar 

  • Garty, H. 1984. Current-voltage relation of the basolateral membrane in tight amphibian epithelia: Use of nystatin to depolarize the apical membrane. J. Membrane Biol. 77:213–222

    Google Scholar 

  • Gluck, S., Cannon, C., Al-Awqati, Q. 1982. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci USA 79:4327–4331

    Google Scholar 

  • Godette, D.W., Uberbacher E.C., Bunick G.J., Frieden, C. 1986. Formation of actin dimers as studied by small angle neutron scattering. J. Biol. Chem. 261:2605–2609

    Google Scholar 

  • Grillone, L., Condeelis, J., Gennaro, J. 1984. Arrangement of the lactin lattice in the basal cytoplasm of toad urinary bladder epithelial cells. Ann. N.Y. Acad. Science 435:268–273

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450

    Google Scholar 

  • Hall, A.L., Schlein, A., Condeelis, J. 1988. Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amaeboid cells. J. Cell Biochem. 37:285–299

    Google Scholar 

  • Hampton, R.Y., Holz, R.W. 1983. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and possible role of osmotic forces in exocytosis. J. Cell Biol. 96:1082–1088

    Google Scholar 

  • Harvey, B.J., Thomas, R., Ehrenfeld J. 1988. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J. Gen. Physiol. 92:767–791

    Google Scholar 

  • Harvey, B.J., Lacoste, I., Ehrenfeld, J. 1991. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia: Effects of oxytocin, heavy metals and inhibitors of Fo-F1 H+-ATPase. J. Gen. Physiol. 97:749–776

    Google Scholar 

  • Iida, K., Yahara, K. 1986. Reversible induction of actin rods in mouse C3H-2K cells by incubation in salt buffers and by treatment with non-ionic detergent. Exp. Cell Res. 164:492–506

    Google Scholar 

  • Kleinzeller, A., Ziyadeh, F.N. 1990. Cell volume regulation in epithelia with emphasis on the role of osmolytes and the cytoskeleton. In: Cell Volume Regulation. K.W. Beyenbach, editor. Comp. Physiol. Vol. 4, pp. 59–86. Karger, Basel

    Google Scholar 

  • Lacoste, I., Dunel-Erb, S., Laurent, P., Harvey, B.J., Ehrenfeld, J. 1991. Active urea transport independent of Hand Na transport in frog skin epithelium. Am. J. Physiol. 261:R898-R906

    Google Scholar 

  • Lacoste, I., Harvey, B.J., Ehrenfeld, J. 1991. Cl permeability of the basolateral membrane of the Rana esculenta epithelium: activation of Cl/HCO3 exchange by alkaline intracellular pH. Biochim. Biophys. Acta 1063:103–110

    Google Scholar 

  • Li, J.H.Y., Lindemann, B. 1983. Chemical stimulation of Na+ transport through amiloride blockable channels of frog skin epithelium. J. Membrane Biol. 75:179–192

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of toad bladder. J. Clin. Invest. 44:1328–1342

    Google Scholar 

  • Llinas, R.R., Heuser J.E. eds. 1977. Depolarization-release coupling systems in neurons. Neurosci. Res. Prog. Bull. 15

  • Lindau, M., Gomperts B.D. 1991. Techniques and concepts in exocytosis: Focus on mast cells. Biochim. Biophys. Acta 1071:429–471

    Google Scholar 

  • Madara, J.L., Trier, J.S. 1986. Functional morphology of the mucosa of the small intestine. In: Physiology of the Gastrointestinal Tract. L.R. Vonlison, editor, pp. 1209–1250. Raven, New York

    Google Scholar 

  • Madsen, K.M., Tisher, C.C. 1986. Structure-function relationships along the distal nephron. Am. J. Physiol. 250:F1-F15

    Google Scholar 

  • Masur, S.K., Holtzman, E., Walter, R. 1972. Hormone stimulated exocytosis in toad urinary bladder. J. Cell Biol. 52:211–219

    Google Scholar 

  • Carty, N.A., O'Neil, R.G. 1990. Dihydropyridine-sensitive cell volume regulation in proximal tubule: the calcium window. Am. J. Physiol. 259:F950-F960

    Google Scholar 

  • Mercier, R., Reggio, H., Devilliors, G., Bataille, D., Mangeat, P. 1989. Membrane cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon gastric acid secretion. J. Cell Biol. 108:441–453

    Google Scholar 

  • Mills, J.W., Counterwarsh, B.A., Salazar, P., Kleinzeller, A. 1989. Effect of heavy metals in rectal gland volume, morphology and cytoskeleton. Bul. Mt. Desert Island Biol. Lab. 29:84–85

    Google Scholar 

  • Montrose-Raflzadeh, C., Guggino, W.B. 1991. Role of intracellular calcium in volume regulation by rabbit medullary thick ascending limb cells. Am. J. Physiol. 260:F402-F409

    Google Scholar 

  • Mooseker, M.S. 1985. Organization, chemistry and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1:209–242

    Google Scholar 

  • Muller, J., Kachadorian, W.A., Di Scala, V.A. 1980. Evidence that ADH-stimulated intramembranous particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85:83–95

    Google Scholar 

  • Neil, R., Hayhurst, R. 1985. Functional differenciation of cell types of cortical collecting duct. Am. J. Physiol 248:F449-F453

    Google Scholar 

  • Okada, Y., Hazama, A., Hashimoto, A., Maruyama, Y., Kubo, M. 1992. Exocytosis upon osmotic swelling in human epithelial cells. Biochim. Biophys. Acta 1107:201–205

    Google Scholar 

  • Palmer, L.G. 1985. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na,Ca and H. J. Membrane Biol. 83:57–69

    Google Scholar 

  • Parisi, M., Pisam, N., Merot, J., Chevalier, J., Bourguet, J. 1985. The role of microtubules and microfilaments on the hydroosmotic response to antidiuretic hormone. Biochim. Biophys. Acta 817:333–342

    Google Scholar 

  • Pearl, M., Taylor, A. 1983. Actin filaments and vasopressinstimulated water flow in toad urinary bladder. Am. J. Physiol. 245:C28-C39

    Google Scholar 

  • Ralston, G.B., Crisp, E.A. 1981. The action of organic mercurials on the erythrocyte membrane. Biochim. Biophys. Acta 649:98–104

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence of a syncytial sodium transport compartment. J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Bauer, R., Beck, F., Mason, J., Roloff, C. 1980. Quantitative determination of electrolyte concentration in epithelial tissues by electron microprobe analysis. In: Current Topics in Membrane Transport. E.L. Boulpaep, editor. Vol 13, pp. 107–120. Academic, London, New York

    Google Scholar 

  • Rothstein, A., Mack, E. 1990. Volume activated K+ and Cl pathways of dissociated epithelial cells (MDCK): Role of Ca2+. Am. J. Physiol. 258:C827-C834

    Google Scholar 

  • Sasaki, J., Tilles, S., Condeeles, J., Carbone, J., Meiteles, L., Franki, N., Bolon, R., Robertson, C., Hays, R.M. 1984. Electron microscopic study of the apical region of the toad bladder epithelial cells. Am. J. Physiol. 247:C268–281

    Google Scholar 

  • Shapiro, M., Mathews, J., Hecht, G., Delp, C., Madara, J.L. 1991. Stabilization of F-actin prevents cAMP-elicited Cl secretion in T-84 cells. J. Clin. Invest. 87:1903–1909

    Google Scholar 

  • Schwartz, G.J., Al-Awqati, Q. 1985. Carbon dioxide causes exocytosis of vesicules containing H pumps in isolated perfused proximal collecting tubules. J. Clin. Invest. 75:1638–1644

    Google Scholar 

  • Sheterline, P., Rickard, J.E., Richards, R.C. 1984. Fc receptordirected phagocytic stimuli induce transient actin assembly at an early stage of phagocytosis in neutrophil leukocytes. Eur. J. Cell Biol. 34:80–87

    Google Scholar 

  • Steinman, R.M., Silver, J.M., Cohn, Z.A. 1974. Pinocytosis in fibroblasts. Quantitative studies in vitro. J. Cell Biol. 63:949–969

    Google Scholar 

  • Stetson, D.L., Steinmetz, P.R. 1983. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245:C113-C120

    Google Scholar 

  • Susuki, K., Kono, T. 1980. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Nacl. Acad. Sci. USA 77:2542–2545

    Google Scholar 

  • Ussing, H.H. 1965. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium. Acta Physiol. Scand. 63:141–155

    Google Scholar 

  • Zimmerberg, J. 1983. Hyperosmotic treatment inhibits cortical granule exocytosis in the sea urchin Lytechinus pictus. Biol. Bull. 165:502

    Google Scholar 

  • Wade, J.B., Stetson, D.L., Lewis, S.A. 1981. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372:106–117

    Google Scholar 

  • Wong, S.M.E., Debell, M.C., Chase, H.S.1990. Cell swelling increases intracellular free (Ca) in cultured toad bladder cells. Am. J. Physiol. 258:F292-F296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We would like to thank Dr. R.M. Hays and Dr. J. Condeelis (Albert Einstein College of Medicine, New York) for stimulating discussions. The confocal microscope observations were done through the courtesy of Dr. C. Sardet and C. Rouvière (Station Marine de Villefranche/mer France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacoste, I., Brochiero, E. & Ehrenfeld, J. Control of Na+ and H+ transports by exocytosis/endocytosis phenomena in a tight epithelium. J. Membarin Biol. 134, 197–212 (1993). https://doi.org/10.1007/BF00234501

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234501

Key words

Navigation