Advertisement

Experimental Brain Research

, Volume 8, Issue 3, pp 284–294 | Cite as

The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark raised mice

  • A. Ruiz-Marcos
  • P. Valverde
Article

Summary

A set of equations which define the distribution of spines along the apical dendrites have been developed. They are satisfied by the distribution of spines and its evolution with the age in the apicals of the layer V pyramidal cells of the visual cortex in normal and dark raised mice. The principal equation describes the distribution of the spines with three coefficients IF, B and K whose values have a functional relation with the age T of the animal. This relation has been defined by three additional equations whose coefficients were calculated. The equations have been used to predict the distribution of dendritic spines corresponding to age-groups of mice not previously studied and to find out the age of mice from the data of their known spine distribution resolving the inverse equations of IF (T) and B(T).

Key words

Visual cortex Dendritic spines Sensory deprivation Model of spine distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J.: Postnatal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory. In: The Neurosciences. A study program, pp. 723–743. Ed. by G.G. Quarton, T. Melnechuk and F.O. Schmitt. New York: Rockefeller University Press 1967.Google Scholar
  2. Bok, S.T.: The branching of the dendrites in the cerebral cortex. Proc. Acad. Sci. (Amst.) 39, 1209–1218 (1936).Google Scholar
  3. —: Histonomy of the cerebral cortex. Amsterdam: Elsevier 1959.Google Scholar
  4. Coleman, P.D., and A.H. Riesen: Environmental effects on cortical dendritic fields. I. Rearing in the dark. J. Anat. (Lond.) 102, 363–374 (1968).Google Scholar
  5. Colonnier, M.: Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).Google Scholar
  6. Cragg, B.G.: The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. (Lond.) 101, 639–654 (1967).Google Scholar
  7. Eayrs, J.T.: The cerebral cortex of normal and hypothyroid rats. Acta anat. (Basel) 25, 160–183 (1955).Google Scholar
  8. —, and B. Goodhead: Postnatal development of the cerebral cortex in the rat. J. Anat. (Lond.) 93, 385–402 (1959).Google Scholar
  9. Globus, A., and A.B. Scheibel: The effect of visual deprivation on cortical neurons. A Golgi study. Exp. Neurol. 19, 331–345 (1967).Google Scholar
  10. Gyllensten, L.: Postnatal development of the visual cortex in darkness (mice). Acta morph. neerl.-scand. 2, 331–345 (1959).Google Scholar
  11. —, T. Malforms and M.-L. Norrlin: Effect of visual deprivation on the optic centers of growing and adult mice. J. comp. Neurol. 124, 149–160 (1965).Google Scholar
  12. —: Visual and non-visual factors in the centripetal stimulation of postnatal growth of the visual centers in mice. J. comp. Neurol. 131, 549–557 (1967).Google Scholar
  13. Haug, H.: Über die exakte Feststellung der Anzahl Nervenzellen pro Volumeneinheit des Cortex cerebri, zugleich ein Beispiel für Durchführung genauer Zählungen. Acta anat. (Basel) 67, 53–73 (1967).Google Scholar
  14. Holloway, R.L.: Dendritic branching. Some preliminary results of training and complexity in rat visual cortex. Brain Res. 2, 393–396 (1966).Google Scholar
  15. —: The evolution of the primate brain. Some aspects of quantitative relations. Brain Res. 7, 121–172 (1968).Google Scholar
  16. Lison, L.: Les méthodes de reconstruction graphique en technique microscopique. In: A. Policard eds: Actualités Scientifiques et Industrielles, 553, VI, Histophysiologie, pp. 28–44. Paris: Herman et Cie. 1937.Google Scholar
  17. Peters, H.G., and H. Bademan: The form and growth of stellate cells in the cortex of the guinea-pig. J. Anat. (Lond.) 97, 111–117 (1963).Google Scholar
  18. Schadé, J.P., H. van Backer and E. Colon: Quantitative analysis of neuronal parameters in the maturing cerebral cortex. In: Progress in brain research, vol.4, Growth and maturation of the brain, pp. 150–175. Amsterdam: Elsevier 1964.Google Scholar
  19. —, and W.B. van Groenigen: Structural organization of the human cerebral cortex. Acta anat. (Basel) 47, 74–111 (1961).Google Scholar
  20. Sholl, D.A.: Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. (Lond.) 87, 387–406 (1953).Google Scholar
  21. —: The organization of the cerebral cortex. London: Methuen 1956.Google Scholar
  22. —: A comparative study of the neuronal packing density in the cerebral cortex. J. Anat. (Lond.) 93, 143–158 (1959).Google Scholar
  23. —, and A.M. Uttley: Pattern discrimination and the visual cortex. Nature (Lond.) 171, 387–388 (1953).Google Scholar
  24. Uttley, A.M.: The probability of neural connexions. Proc. roy. Soc. B 144, 229–240 (1955).Google Scholar
  25. Valverde, F.: Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3, 337–352 (1967).Google Scholar
  26. —: Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 5, 274–292 (1968).Google Scholar
  27. —, and M.E. Esteban: Peristriate cortex of mouse: location and the effects of enucleation on the number of dendritic spines. Brain Res. 9, 145–148 (1968).Google Scholar
  28. —, and A. Ruiz-Marcos: Dendritic spines in the visual cortex of the mouse. Introduction to a mathematical model. Exp. Brain Res. 8, 269–283 (1969).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • A. Ruiz-Marcos
    • 1
  • P. Valverde
    • 1
  1. 1.Departamento de Biofísica and Sección de Neuroanatomía ComparadaInstituto CajalMadridSpain

Personalised recommendations