Skip to main content
Log in

Subunit requirements for Torpedo AChR channel expression: A specific role for the δ-subunit in voltage-dependent gating

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This study examines the subunit requirement for Torpedo acetylcholine receptor (AChR) channel expression and the influence of non-α-subunit deletions on single AChR-channel currents. Xenopus oocytes injected with subunit combinations deficient in single non-α-subunit mRNA transcripts display the following order of ACh sensitivity: β-less > γ-less > δ-less. Oocytes injected with only the α-subunit and one non-α-subunit display the order: αδ > αγ > αβ. These sequences indicate the effectiveness of non-α-subunit substitution is δ > γ > β. Single AChR-channel currents measured in oocytes deficient in either β or γ display conductance and voltage-sensitive burst kinetics similar to the wild-type channel. In contrast, the δ-less combination express channels with burst kinetics that are relatively faster and voltage insensitive. These results indicate that either a specific structural domain in the δ-subunit or its specific interactions with the α-subunit contribute to the voltage-dependent gating of the Torpedo AChR channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C.R., Stevens, C.F. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at the frog neuromuscular junction. J. Physiol. 235:655–691

    Google Scholar 

  • Blount, P., Merlie, J.P. 1989. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3:349–357

    Google Scholar 

  • Buller, A.L., White, M.M. 1988. Control of Torpedo acetylcholine receptor biosynthesis in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 85:8717–8721

    Google Scholar 

  • Buller, A.L., White, M.M. 1990. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo β, γ, and δ subunit RNAs are a consequence of endogenous oocyte gene expression. Mol. Pharmacol. 37:423–428

    Google Scholar 

  • Claudio, T. 1989. Molecular genetics of acetylcholine receptorchannels. In: Frontiers in Molecular Biology: Molecular Neurobiology. D.M. Glover, and B.D. Hames, editors. Chap. 3, pp. 63–142. IRL, Oxford

    Google Scholar 

  • Connolly, J.G. 1989. Structure-function relationships in nicotinic acetylcholine receptors. Comp. Biochem. Physiol. 93A:221–231

    Google Scholar 

  • De Pamphillis, M.L., Herman, S.A., Martinez-Salas, E., Chalifour, L.E., Wirak, D.O., Cupo, D.Y., Miranda, M. 1988. Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals. Biotechniques 6:662–665

    Google Scholar 

  • Dumont, J.N. 1972. Oogenesis in Xenopus laevis (Daudin) 1. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136:153–180

    Google Scholar 

  • Galzi, J.-L., Revah, F., Bessis, A., Changeux, J.-P. 1991. Functional architecture of the nicotinic acetylcholine receptor: From electric organ to brain. Annu. Rev. Pharmacol. Toxicol. 31:37–72

    Google Scholar 

  • Golino, M.D., Hamill, O.P. 1991. The δ-subunit determines voltage-dependent closing of Torpedo AChR channels. Soc. Neurosci. 21: 14.2 (Abstr.)

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100

    Google Scholar 

  • Hamill, O.P., Sakmann, B. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464

    Google Scholar 

  • Hartman, D.S., Claudio, T. 1990. Coexpression of two distinct muscle acetylcholine receptor α-subunits during development. Nature 343:372–375

    Google Scholar 

  • Heinemann, S., Boulter, J., Deneris, E., Connolly, J., Gardner, P., Wada, E., Wada, K., Duvoisin, R., Ballivet, M., Swanson, L., Patrick, J. 1989. Brain and muscle nicotinic acetylcholine receptor: A gene family. In: Molecular Biology of Neuroreceptors and Ion Channels. A. Maelicke, editor. NATO ASI Ser H32, pp. 13–30. Springer-Verlag, Berlin

    Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Moro, Y., Fukuda, K., and Numa, S. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    Google Scholar 

  • Jackson, M.B., Imoto, K., Mishina, M., Konno, T., Numa, S., Sakmann, B. 1990. Spontaneous and agonist-induced openings of an acetylcholine receptor channel composed of bovine muscle α-, β- and δ-subunits. Pfluegers Arch. 417:129–135

    Google Scholar 

  • Kullberg, R., Owens, J.L., Camacho, P., Mandel, G., Brehm, P. 1990. Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 87:2067–2071

    Google Scholar 

  • Kurosaki, T., Fukada, K., Konno, T., Mori, Y., Tanaki, K.I., Mishina, M., Numa, S. 1987. Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett. 214:253–258

    Google Scholar 

  • Liu, Y., Camacho, P., Mandel, G., Brehm, P. 1990 Epsilon subunit confers brief channel open time on multiple forms of muscle ACh receptor. Soc. Neurosci. 16:420.2 (Abstr.)

    Google Scholar 

  • Lo, D.C., Pinkham, J.L., Stevens, C.F. 1990. Influence of the γ subunit and expression system on acetylcholine receptor gating. Neuron 5: 857–866

    Google Scholar 

  • Lo, D.C., Pinkham, J.L., Stevens, C.F., 1991. Role of a key cysteine residue in the gating of the acetylcholine receptor. Neuron 6:31–40

    Google Scholar 

  • Lunt, G.G. 1986. Is the insect neuronal nAChR the ancestral ACh receptor protein? Trends Neurosci. 9:341–342

    Google Scholar 

  • Magleby, K.L., Stevens, C.F. 1972. A quantitative description of endplate currents. J. Physiol. 223:173–197

    Google Scholar 

  • Methfessel, C., Witzemann, V., Takahashi, T., Mishina, M., Numa, S., Sakmann, B. 1986. Patch clamp measurements on Xenopus laevis oocytes: Currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pfluegers Arch. 407:577–588

    Google Scholar 

  • Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., Sakmann, B. 1986. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., Numa, S. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532

    Google Scholar 

  • Numa, S. 1989. A molecular view of transmitter receptors and ionic channels. Harvey Lect. 83:121–165

    Google Scholar 

  • Papazian, D.M., Timpe, L.C., Jan, Y.N., Jan, L.Y. 1991. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310

    Article  CAS  PubMed  Google Scholar 

  • Raftery, M.A., Hunkapiller, M.W., Strader, C.D., Hood, L.E. 1980. Acetylcholine receptor: Complex of homologous subunits. Science 280:1454–1457

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Tomoyuki, T., Masaaki, K., Fukuda, K., Numa, S. 1985. Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543

    Google Scholar 

  • Sambrook, J., Frisch, E.F., Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. (2nd ED.) Cold Spring Harbor Lab., Cold Spring Harbor

    Google Scholar 

  • Sine, S.M., Claudio, T.M., Sigworth, F.J. 1990. Activation of Torpedo AChR expressed in mouse flbroblasts: Single channel current kinetics reveal distinct agonist binding affinities. J. Gen. Physiol. 96: 395–437

    Google Scholar 

  • Stuehmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., Numa, S. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Google Scholar 

  • Unwin, N., Toyoshiba, C., Kubalek, E. 1988. Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107:1123–1138

    Google Scholar 

  • Yoshii, K., Lei, Y., Mayne, K.M., Davidson, N., Lester, H.A. 1987. Equilibrum properties of mouse-Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes. J. Gen. Physiol. 90:553–573

    Google Scholar 

  • Yu, L., Leonard, R.J., Davidson, N., Lester, H.A. 1991. Single-channel properties of mouse-Topedo acetylcholine receptor hybrids expressed in Xenopus oocytes. Mol. Brain Res. 10:203–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Dr. Toni Claudio for providing us with the clones and the Cornell Biotechnology Program for their support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golino, M.D., Hamill, O.P. Subunit requirements for Torpedo AChR channel expression: A specific role for the δ-subunit in voltage-dependent gating. J. Membarin Biol. 129, 297–309 (1992). https://doi.org/10.1007/BF00232911

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232911

KeyWords

Navigation