Skip to main content
Log in

Evolution in the structure and function of carboxyl proteases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

A model for the structure and function of extracellular carboxyl (acid) proteases can be established from three amino acid sequences and four crystal structures of these enzymes. The carboxyl proteases from gastric and fungal origins are very homologous in both primary and tertiary structures. The molecules consist of about 320 residues organized with a secondary structure which is primarily comprised of β-strands and very similar tertiary structures. An apparent binding cleft, which can accommodate a substrate with about eight amino acid residues, contains near its midpoint the active center residues Asp-215, Asp-32, and Ser-35. These three residues are hydrogen bonded to each other.

An intracellular carboxyl protease, cathepsin D, is very homologous to the extracellular enzymes in N-terminal amino acid sequence and primary structure location of active center residues. The tertiary structure of cathepsin D is probably similar, as well. However, cathepsin D contains a unique hydrophobic “tail” made up of about 100 residues added on the C-terminal side. Cathepsin D precursor is over 100,000 daltons in molecular weights, as contrasted to the gastric carboxyl protease zymogens, which are about 40,000 daltons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, J., 1976. Trends in Biochemical Sciences, 1, 205–208.

    Google Scholar 

  2. Hartsuck, J. A., and Tang, J., 1978. In Regulatory Proteolytic Enzymes and Their Inhibitors (Magnusson, S., Otteson, M., Foltmann, B., Danø, K., and Neurath, H., editors), pp. 35–36, Pergamon Press, Oxford.

  3. Tang, J., 1977. Nature, 266, 119–120.

    Google Scholar 

  4. Foltmann, B., and Pedersen, V. B., 1977. In Acid Proteases, Structure, Function, and Biology (Tang, J., editor), pp. 3–22, Plenum Press, New York.

  5. Kushnev, I., Rapp, W., and Burtin, P., 1964. J Clin. Invest., 43, 1983–1993.

    Google Scholar 

  6. Samloff, I. M., and Townes, P. L., 1970. Science, 168, 144–145.

    Google Scholar 

  7. Herriott, R. M., 1938. J Gen. Physiol., 21, 501–540.

    Google Scholar 

  8. Garg, G. K., and Virupaksha, T. K., 1970. Eur. J Biochem., 17, 4–12.

    Google Scholar 

  9. Morihara, K., 1974. In Adv. Enzymol., 41, 179–243.

    Google Scholar 

  10. Ottesen, M., and Rickert, W., 1970. Compt. Rend. Trav. Lab. Carlsberg, 37, 301–325.

    Google Scholar 

  11. Dickie, N., and Liener, I. E., 1962. Biochim. Biophys. Acta., 64, 41–51.

    Google Scholar 

  12. Holzer, H., Bünning, P., and Meussdoerffer, F., 1977. In Acid Proteases, Structure, Function, and Biology (Tang, J., editor), pp. 271–290, Plenum Press, New York.

  13. 13. Inagami, T., Murakami, K., Misono, K., Workman, R. J.,Cohen, S., and Suketa, Y., 1977. In Acid Proteases, Structure, Function, and Biology (Tang, J., editor), pp. 225–248, Plenum Press, New York.

  14. Tang, J., Sepulveda, P., Marciniszyn, J., Jr., Chen, K. C. S., Huang, W.-Y., Tao, N., Liu, D., and Lanier, J. P., 1973. Proc. Nat. Acad. Sci. USA.,70, 3437–3439.

    Google Scholar 

  15. Foltmann, B., Pedersen, V. B., Jacobsen, H., Kauffman, D., and Wybrandt, G., 1977. Proc. Nat. Acad. Sci., USA, 74, 2321–2324.

    Google Scholar 

  16. Hsu, I.-N., Delbaere, L. T. J., James, M. N. G., and Hofmann, T., 1977. Nature, 266, 140–145.

    Google Scholar 

  17. Rajagopolan, T. G., Stein, W. H., and Moore, S., 1966. J. Biol. Chem., 241, 4295–4297.

    Google Scholar 

  18. Bayliss, R. S., Knowles, V. R., and Wybrandt, G. B., 1966. Biochem. J, 113, 377–386.

    Google Scholar 

  19. Hofmann, T., 1974. In Adv. in Chem., 139, 146–185, Am. Chem. Soc.

    Google Scholar 

  20. Tang, J., 1971. J. Biol. Chem., 246, 4510–4517.

    Google Scholar 

  21. Chen, K. C. S., and Tang, J., 1972. J. Biol. Chem., 247, 2566–2574.

    Google Scholar 

  22. Clement, G. E., 1973. In Prog. in Bioorg. Chem., 2, 177–238.

    Google Scholar 

  23. Andreeva, N., Fedorov, A., Gustchina, A., Riskulov, R., Safro, M., and Shutzkever, N., 1978. J Mot. Biol. (Russian), 12, 922–927.

    Google Scholar 

  24. Subramanian, E., Swan, I. D. A., Liu, M., Davies, D. R., Jenkins, J. A., Tickle, I. J., and Blundell, T. L., 1977. Proc. Nat. Acad. Sci. USA, 74, 556–559.

    Google Scholar 

  25. Tang, J., 1963. Nature, 199, 1094–1095.

    Google Scholar 

  26. Powers, J. C., Harley, A. D., and Myers, D. V., 1977. In Acid Proteases, Structure, Function, and Biology (Tang, J., editor), pp. 141–157, Plenum Press, New York.

  27. Fruton, J. S., 1976. In Adv. Enzymol., 44, 1–36.

    Google Scholar 

  28. Hartsuck, J. A., and Tang, J., 1972. J. Biol. Chem., 242, 2575–2580.

    Google Scholar 

  29. Lunblad, R. L., and Stein, W. H., 1966. J. Biol. Chem., 244, 154–160.

    Google Scholar 

  30. James, M. N. G., Hsu, I.-N., and Delbaere, T. J., 1977. Nature, 267, 808–813.

    Google Scholar 

  31. Antonov, V. K., Ginodman, L. M., Kapitannikov, Yu. V., Barshevskaya, T. N., Gurova, A. G., and Rumsh, L. D., 1978. FEBS Letters, 88, 87–90.

    Google Scholar 

  32. Huber, R., and Bode, W., 1978. In Regulatory Proteolytic Enzymes and Their Inhibitors (Magnusson, S., Ottesen, M., Foltmann, B., Danø, K., and Neurath, H., editors), pp. 15–34, Pergamon Press, Oxford.

  33. Marciniszyn, J., Jr., Hartsuck, J. A., and Tang, J., 1976. J. Biol. Chem., 251, 7088–7094.

    Google Scholar 

  34. Rich, D. H., and Sun, E. T., 1977. In Peptides Proc. Fifth Amer. Peptide Symp. (Goodman, M., and Meinhofer, J., editors), pp. 209, J. Wiley and Sons, New York.

  35. Barrett, A. J, 1977. In Proteinases in Mammalian Cells and Tissues (Barrett, A. J, editor), pp. 209–233, North Holland, Amsterdam.

  36. Dean, R. T., 1975. Nature, 257, 414–416.

    Google Scholar 

  37. Smith, G. D., Murray, M. A., Nichol, L. W., and Trikojus, V. M., 1969. Biochim. Biophys. Acta., 171, 288–298.

    Google Scholar 

  38. Cunningham, M., and Tang, J., 1976. J. Biol. Chem., 251, 4528–4536.

    Google Scholar 

  39. Aoyagi, T., Morishima, H., Nishizawa, R., Kunimoto, S., Takeuchi, T., and Umezawa, H., 1972. J Antibiotics, 25, 689–694.

    Google Scholar 

  40. Huang, J. S., Huang, S. S., and Tang, J., 1979. (Submitted for publication.)

  41. Huang, J. S., Huang, S. S., and Tang, J., 1979. Proc. of FEBS. Symposium on Proteolytic Enzymes, FEBS Special Meeting on Enzymes, Dubrovnik-Cavtat, 1979. Pergamon (in Press)

  42. Keilova, H., 1976. In Intracellular Protein Catabolism (Hanson, H., and Bohley, P., editors), pp. 237–251, J. A. Barth, Leipzig.

  43. Liljas, A., and Rossman, M. G., 1974. Ann. Rev. Biochem., 43, 475–507.

    Google Scholar 

  44. Spatz, L., and Strittmatter, P., 1973. J. Biol. Chem., 248, 793–799.

    Google Scholar 

  45. Lapresle, C., 1971. In Tissue Proteinases (Barrett, A. J, and Dingle, J. T., editors), pp. 135–155, North Holland, Amsterdam.

  46. Hartsuck, J. A., Marciniszyn, J., Jr., Huang, J. S., and Tang, J., 1977. In Acid Proteases, Structure, Function, and Biology (Tang, J., editor), pp. 85–102, Plenum Press, New York.

  47. Al-Janabi, J., Hartsuck, J. A., and Tang, J., 1972. J. Biol. Chem., 247, 4628–4632.

    Google Scholar 

  48. Sunny, C. G., Hartsuck, J. A., and Tang, J., 1975. J. Biol. Chem., 250, 2635–2639.

    Google Scholar 

  49. Marciniszyn, J., Jr., Huang, J. S., Hartsuck, J. A., and Tang, J., 1976. J. Biol. Chem., 251, 7095–7102.

    Google Scholar 

  50. Inagami, T., Hirose, S., Matoba, T., Murakami, K., and Okamoto, K., 1977. Fed. Proc., 36, 2372.

    Google Scholar 

  51. Inagami, T., Takahashi, N., Yokosawa, N., and Takii Y., 1979. In Intern. Symp. on Kinins (Suzuki, T., and Moriya, H., editors), Plenum Press, New York.

  52. Gross, D. M. and Barajas, L., 1975. J Lab. Clin. Med., 85, 467–477.

    Google Scholar 

  53. Fischer, E.-P., and Thomson, K. S., 1979. J. Biol. Chem., 254, 50–56.

    Google Scholar 

  54. Tang, J., James, M. N. G., Hsu, I.-N., Jenkins, J. A., and Blundell, T. L., 1978. Nature, 271, 618–621.

    Google Scholar 

  55. Andreeva, N. S., and Gustchina, A. E., 1979. Biochem. Biophys. Res. Commun., 87, 32–42.

    Google Scholar 

  56. Levy, M. R., and Chou, S. C., 1974. Biochim. Biophys. Acta., 334, 423–430.

    Google Scholar 

  57. Levy, M. R., Siddiqui, W. A., and Chou, S. C., 1974. Nature, 247, 546–549.

    Google Scholar 

  58. Virupaksha, T. K., and Wallenfels, K., 1974. FEBS Letters, 40, 287–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J. Evolution in the structure and function of carboxyl proteases. Mol Cell Biochem 26, 93–109 (1979). https://doi.org/10.1007/BF00232887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232887

Keywords

Navigation