Skip to main content
Log in

Transcriptional control of sodium transport in tight epithelia by adrenal steroids

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Conclusions

The model for the adrenal steroid action on Na transport in tight epithelia as depicted in Fig. 3A and B dissociates two phases: an early phase during which the pre-existing Na transport machinery is activated and a late phase during which the transport capacity of the machinery is increased. These two sequential phases have been distinguished based on differences in functional aspects of the induced transport, on selective effects of agents interfering with transcriptional regulation and on a correlation of the late response phase with an increase in transport protein synthesis and expression [26, 45, 46, 98, 99, 124]. These observations suggest that a bimodal stimulation of Na transport could involve two different gene networks which are directly (in the physiological meaning) and independently stimulated by the action of the hormone-receptor complex and the following “molecular” cascades (see section Molecular and Physiological Cascades). The relatively clear temporal dissociation of the responses found in experimental situations is probably the consequence of inherent properties of the two networks. Indeed, to generate rapid functional changes, the genes involved in the early response must encode products which have relatively short half-lifes at the mRNA and protein levels. In contrast, the constitutive elements of the Na transport machinery that are increased during the late phase of adrenal steroid action have, as shown for the Na,K-ATPase [82], relatively long half-lifes. Consequently, even though changes in transcription may take place early in the course of the hormonal treatment, they impact on protein synthesis and pools only slowly and after a substantial lag period.

On the one hand, ongoing research will soon provide more information on the nature, time course and hormone/receptor specificity of adrenal-steroid-regulated genes. On the other hand, the availability of new technical and molecular tools to study the proteins of the Na transport machinery greatly increases the possibilities for studying its regulation by adrenal steroids. Consequently, it will be a fascinating challenge to relate the data emerging from both approaches, and it appears that only a combination of methods and tools will allow to progressively fill the gap of understanding which still lies between the transcriptional effects and the transport regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, A.J., Danielsen, M., Robins, D.M. 1992. Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc. Natl. Acad. Sci. USA 89:11660–11663

    Google Scholar 

  2. Allan, G.F., Tsai, S.Y., Tsai, M.J., Omalley, B.W. 1992. Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc. Natl. Acad. Sci. USA 89:11750–11754

    Google Scholar 

  3. Arriza, J.L., Simerly, R.B., Swanson, L.W., Evans, R.M. 1988. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1:887–900

    Google Scholar 

  4. Asher, C., Eren, R., Kahn, L., Yeger, O., Garty, H. 1992. Expression of the amiloride-blockable Na+ channel by RNA from control versus aldosterone-stimulated tissue. J. Biol. Chem. 267:16061–16065

    Google Scholar 

  5. Asher, C., Garty, H. 1988. Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms. Proc. Natl. Acad. Sci. USA 85:7413–7417

    Google Scholar 

  6. Asher, C., Singer, D., Eren, R., Yeger, O., Dascal, N., Garty, H. 1992. NaCl-dependent expression of amiloride-blockable Na+ channel in Xenopus oocytes. Am. J. Physiol. 262:G244-G298

    Google Scholar 

  7. Barlet-Bas, C., Cheval, L., Feraille, E., Marsy, S., Doucet, A. 1991. Regulation of tubular Na-K-ATPase. In: Nephrology. M. Hatano, editor. pp. 419–434. Springer-Verlag, Tokyo

    Google Scholar 

  8. Barlet-Bas, C., Khadoury, C., Marsy, S., Doucet, A. 1988. Sodium-independent in vitro induction of Na+,K+-ATPase by aldosterone in renal target cells: Permissive effect of triiodothyronine. Proc. Natl. Acad. Sci. USA 85:1707–1711

    Google Scholar 

  9. Bastl, C.P., Hayslett, J.P. 1992. The cellular action of aldosterone in target epithelia. Kidney Int. 42:250–264

    Google Scholar 

  10. Bastl, C.P., Schulman, G., Cragoe, E.J. 1992. Glucocorticoids inhibit colonic aldosterone-induced conductive Na+ absorption in adrenalectomized rat. Am. J. Physiol. 263:F443-F452

    Google Scholar 

  11. Baumann, H., Paulsen, K., Kovacs, H., Berglund, H., Wright, A.P.H., Gustafsson, J.A., Hard, T. 1993. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry 32:13463–13471

    Google Scholar 

  12. Beekman, J.M., Allan, G.F., Tsai, S.Y., Tsai, M.J., O'Malley, B.W. 1993. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol. Endocrinol. 7:1266–1274

    Google Scholar 

  13. Benos, D.J., Saccomani, G., Brenner, B.M., Sariban-Sohraby, S. 1986. Purification and characterization of the amiloride-sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc. Natl. Acad. Sci. USA 83:8525–8529

    Google Scholar 

  14. Beron, J., Verrey, F. 1994. Aldosterone induces early activation and late accumulation of Na,K-ATPase at surface of A6 cells. Am. J. Physiol. 266:C1728-C1290

    Google Scholar 

  15. Blazer-Yost, B.L., Fesseha, Y., Cox, M. 1992. Aldosterone-mediated Na+ transport in renal epithelia—Time-course of induction of a potential regulatory component of the conductive Na+ channel. Biochem. Int. 26:887–897

    Google Scholar 

  16. Bocquel, M.T., Kumar, V., Stricker, C., Chambon, P., Gronenmeyer, H. 1989. The contribution of the N- and C-terminal regions of steroid receptors to activation of the transcription is both receptor and cell specific. Nucl. Acids Res. 17:2581–2595

    Google Scholar 

  17. Bourgeois, S., Gruol, D.J., Newby, R.F., Rajah, F.M. 1993. Expression of an MDR gene is associated with a new form of resistance to dexamethasone-induced apoptosis. Mol. Endocrinol. 7:840–851

    Google Scholar 

  18. Bowen, J.D., McDonough, A.A. 1987. Pretranslational regulation of Na+-K+-ATPase in cultured canine kidney cells by low K. Am. J. Physiol. 252:C179-C189

    Google Scholar 

  19. Brem, A.S., Morris, D.J. 1993. Interactions between glucocorticoids and mineralocorticoids in the regulation of renal electrolyte transport. Mol. Cell. Endocrinol. 97:C1-C5

    Google Scholar 

  20. Broillet, M.C., Berger, A., Horisberger, J.D. 1993. Early effect of aldosterone on the basolateral potassium conductance of A6 cells. Pfluegers Arch. 424:91–93

    Google Scholar 

  21. Burns, K., Duggan, B., Atkinson, E.A., Famulski, K.S., Nemer, M., Bleackley, R.C., Michalak, M. 1994. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367:476–480

    Google Scholar 

  22. Canessa, C.M., Horisberger, J.D., Rossier, B.C. 1993. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Google Scholar 

  23. Canessa, C.M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J.D., Rossier, B.C. 1994. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Google Scholar 

  24. Chuard, F., Durand, J. 1992. Coupling between the intracellular pH and the active transport of sodium in an epithelial cell line from Xenopus laevis. Comp. Biochem. Physiol. 102:7–14

    Google Scholar 

  25. Clore, J., Schoolwerth, A., Watlington, C.O. 1992. When is cortisol a mineralocorticoid. Kidney Int. 42:1297–1308

    Google Scholar 

  26. Coupaye-Gerard, B., Kim, H.J., Singh, A., Blazer-Yost, B.L. 1994. Differential effects of brefeldin-a on hormonally regulated Na+ transport in a model renal epithelial cell line. Biochim. Biophys. Acta—Biomembr. 1190:449–456

    Google Scholar 

  27. Dahlman-Wright, K., Almlof, T., McEwan, I.J., Gustafsson, J.A., Wright, A.P.H. 1994. Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl. Acad. Sci. USA 91:1619–1623

    Google Scholar 

  28. Dauvois, S., White, R., Parker, M.G. 1993. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell Sci. 106:1377–1388

    Google Scholar 

  29. Dedhar, S., Rennie, P.S., Shago, M., Hagesteijn, C.Y.L., Yang, H.L., Filmus, J., Hawley, R.G., Bruchovsky, N., Cheng, H., Matusik, R.J., Giguere, V. 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480–483

    Google Scholar 

  30. DeKloet, E.R., Sutanto, W., Vandenberg, D.T.W.M., Carey, M.P., Vanhaarst, A.D., Hornsby, C.D., Meijer, O.C., Rots, N.Y., Oitzl, M.S. 1993. Brain mineralocorticoid receptor diversity-functional implications. J. Steroid Biochem. Mol. Biol. 47:183–190

    Google Scholar 

  31. Denault, D., Rusvai, E., Chen, W.R., Fejes-Tóth, G., Náray-Fejes-Tóth, A. 1993. Aldosterone-induced proteins and mRNAs in cortical collecting duct (CCD) cells. J. Am. Soc. Nephrol. 4:437 (Abstr.)

    Google Scholar 

  32. Djouadi, F., Wijkhuisen, A., Bastin, J. 1992. Coordinate development of oxidative enzymes and Na-K-ATPase in thick ascending limb—role of corticosteroids. Am. J. Physiol. 263:F237-F242

    Google Scholar 

  33. Doucet, A., Barlet-Bas, C. 1989. Involvement of Na+,K+-ATPase in antinatriuretic action of mineralocorticoids in mammalian kidney. Curr. Top. Membr. Transp. 34:185–208

    Google Scholar 

  34. Duncan, R.L., Grogan, W.M., Kramer, L.B., Watlington, C.O. 1988. Corticosterone's metabolite is an agonist for Na+ transport stimulation in A6 cells. Am. J. Physiol. 255:F736-F748

    Google Scholar 

  35. Edelman, I.S., Bogoroch, R., Porter, G.A. 1963. On the mechanism of action of aldosterone on sodium transport: the role of protein synthesis. Proc. Natl. Acad. Sci. USA 50:1169–1177

    Google Scholar 

  36. ElMernissi, G., Barlet-Bas, C., Khadouri, C., Cheval, L., Marsy, S., Doucet, A. 1993. Short-term effect of aldosterone on vasopressin-sensitive adenylate cyclase in rat collecting tubule. Am. J. Physiol. 264:F821-F826

    Google Scholar 

  37. Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Google Scholar 

  38. Falvey, E., Schibler, U. 1991. How are the regulators regulated? FASEB J. 5:309–314

    Google Scholar 

  39. Farman, N., Bonvalet, J.P., Seckl, J.R. 1994. Aldosterone selectively increases Na+-K+-ATPase alpha(3)-subunit mRNA expression in rat hippocampus. Am. J. Physiol. 266:C423-C428

    Google Scholar 

  40. Fromm, M., Schulzke, J.D., Hegel, U. 1993. Control of electrogenic Na+ absorption in rat late distal colon by nanomolar aldosterone added in vitro. Am. J. Physiol. 264:E68-E73

    Google Scholar 

  41. Fujii, Y., Takemoto, F., Katz, A.I. 1990. Early effects of aldosterone on Na-K pump in rat cortical collecting tubules. Am. J. Physiol. 259:F40-F45

    Google Scholar 

  42. Funder, J.W. 1993. Aldosterone action. Annu. Rev. Physiol. 55:115–130

    Google Scholar 

  43. Funder, J.W. 1993. Mineralocorticoids, glucocorticoids, receptors and response elements. Science 259:1132–1133

    Google Scholar 

  44. Gaeggeler, H.P., Duperrex, H., Hautier, S., Rossier, B.C. 1993. Corticosterone induces 11beta-HSD and mineralocorticoid specificity in an amphibian urinary bladder cell line. Am. J. Physiol. 264:C317-C322

    Google Scholar 

  45. Garty, H. 1986. Mechanism of aldosterone action in tight epithelia. J. Membrane Biol. 90:193–205

    Google Scholar 

  46. Garty, H. 1994. Molecular properties of epithelial, amilorideblockable Na+ channels. FASEB J. 8:522–528

    Google Scholar 

  47. Garty, H., Edelman, I.S. 1983. Amiloride-sensitive trypsinisation of apical sodium channels. J. Gen. Physiol. 81:785–803

    Google Scholar 

  48. Garty, H., Peterson-Yantorno, K., Asher, C., Civan, M.M. 1994. Effects of corticoid agonists and antagonists on apical Na+ permeability of toad urinary bladder. Am. J. Physiol. 266:F108-F116

    Google Scholar 

  49. Geering, K., Claire, M., Gaeggeler, H.P., Rossier, B.C. 1985. Receptor occupancy vs. induction of Na+-K+-ATPase and Na+ transport by aldosterone. Am. J. Physiol. 248:C102-C108

    Google Scholar 

  50. Geering, K., Gaeggeler, H.P., Rossier, B.C. 1984. Effects of thyromimetic drugs on aldosterone-dependent sodium transport in the toad bladder. J. Membrane Biol. 77:15–23

    Google Scholar 

  51. Geering, K., Girardet, M., Bron, C., Kraehenbuhl, J.P., Rossier, B.C. 1982. Hormonal regulation of (Na+,K+)-ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257:10388–10343

    Google Scholar 

  52. Guiochon-Mantel, A., Milgrom, E. 1993. Cytoplasmic nuclear trafficking of steroid hormone receptors. Trends Endocrinol. Metab. 4:322–328

    Google Scholar 

  53. Guyton, A.C. 1991. Blood pressure control—special role of the kidneys and body fluids. Science 252:1813–1816

    Google Scholar 

  54. Halm, D.R., Troutman-Halm, S. 1994. Aldosterone stimulates K secretion prior to onset of Na absorption in guinea pig distal colon. Am. J. Physiol. 266:C552-C558

    Google Scholar 

  55. Harvey, B.J., Thomas, S.R., Ehrenfeld, J. 1988. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J. Gen. Physiol. 92:767–791

    Google Scholar 

  56. Hinton, C.F., Eaton, D.C. 1989. Expression of amilorideblockable sodium channels in Xenopus oocytes. Am. J. Physiol. 257:C825-C829

    Google Scholar 

  57. Horisberger, J.D. 1992. Early effects of aldosterone on apical and basolateral membrane conductances of TBM cells. Am. J. Physiol. 263:C384-C388

    Google Scholar 

  58. Hsu, S.C., Qi, M., Defranco, D.B. 1992. Cell cycle regulation of glucocorticoid receptor function. EMBO J. 11:3457–3468

    Google Scholar 

  59. Hutchison, K.A., Dittmar, K.D., Czar, M.J., Pratt, W.B. 1994. Proof that hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with hsp90. J. Biol. Chem. 269:5043–5049

    Google Scholar 

  60. Inoue, S., Orimo, A., Hosoi, T., Kondo, S., Toyoshima, H., Kondo, T., Ikegami, A., Ouchi, Y., Orimo, H., Muramatsu, M. 1993. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc. Natl. Acad. Sci. USA 90:11117–11121

    Google Scholar 

  61. Ivarie, R.D., Baxter, J.D., Morris, J.A. 1981. Interaction of thyroid and glucocorticoid hormones in rat pituitary tumor cells. J. Biol. Chem. 256:4520–4528

    Google Scholar 

  62. Johnson, J.P. 1992. Cellular mechanisms of action of mineralocorticoid hormones. Pharmacol. Ther. 53:1–29

    Google Scholar 

  63. Jorkasky, D., Cox, M., Feldman, G.M. 1985. Differential effects of corticosteroids on Na+ transport in rat distal colon in vitro. A. J. Physiol. 248:G424-G431

    Google Scholar 

  64. Kaissling, B., Le Hir, M. 1991. Aldosterone: influence on distal tubule cell structure. In: Aldosterone: Fundamental Aspects, Colloque INSERM Vol 215. J.-P. Bonvalet, N. Farman, M. Lombès, and M.E. Rafestin-Oblin, editors. pp. 175–185. John Libbey Eurotext, Paris

    Google Scholar 

  65. Kang, K.I., Devin, J., Cadepond, F., Jibard, N., Guiochonmantel, A., Baulieu, E.E., Catelli, M.G. 1994. In vivo functional protein protein interaction-nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus. Proc. Natl. Acad. Sci. USA 91:340–344

    Google Scholar 

  66. Kemendy, A.E., Kleyman, T.R., Eaton, D.C. 1992. Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am. J. Physiol. 263:C825-C837

    Google Scholar 

  67. Kenouch, S., AlFaidy, N., Bonvalet, J.P., Farman, N. 1994. Expression of 11 beta-OHSD along the nephron of mammals and humans. Steroids 59:100–104

    Google Scholar 

  68. Lanz, R.B., Hug, M, Gola, M., Tallone, T., Wieland, S., Rusconi, S. 1994. Active, interactive, and inactive steroid receptor mutants. Steroids 59:148–152

    Google Scholar 

  69. Laplace, J.R., Husted, R.F., Stokes, J.B. 1992. Cellular responses to steroids in the enhancement of Na+ transport by rat collecting duct cells in culture-differences between glucocorticoid and mineralocorticoid hormones. J. Clin. Invest. 90:1370–1378

    Google Scholar 

  70. Legoff, P., Montano, M.R., Schodin, D.J., Katzenellenbogen, B.S. 1994. Phosphorylation of the human estrogen receptor—identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269:4458–4466

    Google Scholar 

  71. Liang, P., Pardee, A.B. 1992. Differential display of eukariotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    CAS  PubMed  Google Scholar 

  72. Lombés, M., Oblin, M.E., Gasc, J.M., Baulieu, E.E., Farman, N., Bonvalet, J.P. 1992. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ. Res. 71:503–510

    Google Scholar 

  73. Luisi, B.F., Xu, W.X., Otwinowski, Z., Freedman, L.P., Yamamoto, K.R., Sigler, P.B. 1991. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505

    Google Scholar 

  74. Marunaka, Y., Eaton, D.C. 1991. Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am. J. Physiol. 260:C1071-C1084

    Google Scholar 

  75. Marver, D., Stewart, J., Funder, J., Feldman, D., Edelman, I.S. 1974. Renal aldosterone receptors: studies with [3H]aldosterone and the antimineralocorticoid [3H]spironolactone (SC-26304). Proc. Natl. Acad. Sci. USA 71:1431–1435

    Google Scholar 

  76. Meyer, M.E., Pornon, A.J., Ji, J., Bocquel, M.T., Chambon, P., Gronemeyer, H. 1990. Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J. 9:3923–3932

    Google Scholar 

  77. Morris, D.J., Souness, G.W. 1992. Protective and specificity-conferring mechanisms of mineralocorticoid action. Am. J. Physiol. 263:F759-F768

    Google Scholar 

  78. Muchardt, C., Yaniv, M. 1993. A human homologue of saccharomyces-cerevisiae SNF2/SWI2 and drosophila-brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290

    Google Scholar 

  79. Náray-Fejes-Tóth, A., Fejes-Tóth, G. 1990. Glucocorticoid receptors mediate mineralocorticoid-like effects in cultured collecting duct cells. Am. J. Physiol. 259:F672-F678

    Google Scholar 

  80. Náray-Fejes-Tóth, A., Rusvai, E., Fejes-Tóth, G. 1994. Mineralocorticoid receptors and 11 beta-steroid dehydrogenase activity in renal principal and intercalated cells. Am. J. Physiol. 266:F76-F80

    Google Scholar 

  81. Oberleithner, H., Vogel, U., Kersting, U., Steigner, W. 1990. Madin-Darby canine kidney cells. II. Aldosterone stimulates Na+/H+ and Cl/HCO 3 exchange. Pfluegers Arch. 416:533–539

    Google Scholar 

  82. O'Neil, R.G. 1989. Modulation of Na+,K+-ATPase expression in renal collecting duct. Curr. Top. Membr. Transp. 34:209–228

    Google Scholar 

  83. Paccolat, M.P., Geering, K., Gaeggeler, H.P., Rossier, B.C. 1987. Aldosterone regulation of Na+ transport and Na+-K+-ATPase in A6 cells: role of growth conditions. Am. J. Physiol. 252:C468-C476

    Google Scholar 

  84. Palmer, L.G. 1992. Epithelial Na channels—Function and diversity. Annu. Rev. Physiol. 43:51–66

    Google Scholar 

  85. Palmer, L.G., Antonian, L., Frindt, G. 1993. Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:43–57

    Google Scholar 

  86. Palmer, L.G., Corthesy-Theulaz, I., Gaeggeler, H.P., Kraehenbuhl, J.P., Rossier, B.C. 1990. Expression of epithelial Na channels in Xenopus oocytes. J. Gen. Physiol. 96:23–46

    Google Scholar 

  87. Palmer, L.G., Edelman, I.S. 1981. Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann. NY Acad. Sci. 372:1–14

    Google Scholar 

  88. Pácha, J., Frindt, G., Antonian, L., Silver, R.B., Palmer, L.G. 1993. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:25–42

    Google Scholar 

  89. Pearce, D., Yamamoto, K.R. 1993. Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259:1161–1165

    Google Scholar 

  90. Pellanda, A.M., Gaeggeler, H.P., Horisberger, J.D., Rossier, B.C. 1992. Sodium-independent effect of aldosterone on initial rate of ouabain binding in A6 cells. Am. J. Physiol. 262:C899-C906

    Google Scholar 

  91. Petzel, D., Ganz, M.B., Nestler, E.J., Lewis, J.J., Goldenring, J., Akcicek, F., Hayslett, J.P. 1992. Correlates of aldosterone-induced increases in Ca- (2+)i and Isc suggest that Ca- (2+)i is the second messenger for stimulation of apical membrane conductance. J. Clin. Invest. 89:150–156

    Google Scholar 

  92. Power, R.F., Mani, S.K., Codina, J., Conneely, O.M., Omalley, B.W. 1991. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254:1636–1639

    Google Scholar 

  93. Pratt, W.B. 1993. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268:21455–21458

    Google Scholar 

  94. Rafestin-Oblin, M.E., Lombés, M., Couette, B., Baulieu, E.E. 1992. Difference between aldosterone and its antagonists in binding kinetics and ligand-induced hsp90 release from mineralocorticosteroid receptor. J. Steroid. Biochem. Mol. Biol. 41:815–821

    Google Scholar 

  95. Ray, A., Prefontaine, K.E. 1994. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91:752–756

    Google Scholar 

  96. Rayson, B.M. 1991. [Ca2+]i regulates transcription rate of the Na+/K+-ATPase-alphal subunit. J. Biol. Chem. 266:21335–21338

    Google Scholar 

  97. Rokaw, M.D., Palevsky, P.M., Johnson, J.P. 1993. Aldosterone (aldo) stimulates protein lipidation and G-protein (GP) synthesis in A6 cells. J. Am. Soc. Nephrol. 4:446 (Abstr.)

    Google Scholar 

  98. Rossier, B.C., Canessa, C.M., Schild, L., Horisberger, J.D. 1994. Epithelial sodium channels. Curr. Opinion Nephrol. Hypertension 3:487–496

    Google Scholar 

  99. Rossier, B.C., Paccolat, M.-P., Verrey, F., Kraehenbuhl, J.P., Geering, K. 1985. Mechanism of action of aldosterone: A pleiotropic response. In: Hormones and Cell Regulation Vol. 9, J.E. Dumont, B. Hamprecht and J. Nunez, editors. pp. 209–225. INSERM, Paris

    Google Scholar 

  100. Rossier, B.C., Palmer, L.G. 1992. Mechanisms of aldosterone action on sodium and potassium transport. In: The Kidney: Physiology and Pathophysiology (2nd ed.). D.W. Seidin and G. Giebisch, editors. pp. 1373–1405. Raven, New York

    Google Scholar 

  101. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M.H.M., Evans, R.M., Holsboer, F., Damm, K. 1993. Transactivation and synergistic properties of the mineralocorticoid receptor—relationship to the glucocorticoid receptor. Mol. Endocrinol. 7:597–603

    Google Scholar 

  102. Rupprecht, R., Reul, J.M.H.M., Vansteensel, B., Spengler, D., Soder, M., Berning, B., Holsboer, F., Damm, K. 1993. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur. J. Pharmacol. 247:145–154

    Google Scholar 

  103. Sabatini, S., Hartsell, A., Meyer, M., Kurtzman, N.A., Hierholzer, K. 1993. Corticosterone metabolism and membrane transport. Mineral Electrolyte Metab. 19:343–350

    Google Scholar 

  104. Sariban-Sohraby, S., Burg, M., Wiesmann, W.P., Chiang, P.K., Johnson, J.P. 1984. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of action of aldosterone action. Science 225:745–746

    Google Scholar 

  105. Sariban-Sohraby, S., Fisher, R.S., Abramow, M. 1993. Aldosterone-induced and GTP-stimulated methylation of a 90-kDa polypeptide in the apical membrane of A6 epithelia. J. Biol. Chem. 268:26613–26617

    Google Scholar 

  106. Schafer, J.A., Hawk, C.T. 1992. Regulation of Na+ channels in the cortical collecting duct by AVP and mineralocorticoids. Kidney Int. 41:255–268

    Google Scholar 

  107. Schmidt, T.J., Husted, R.F., Stokes, J.B. 1993. Steroid hormone stimulation of Na+ transport in A6 cells is mediated via glucocorticoid receptors. Am. J. Physiol. 264:C875-C884

    Google Scholar 

  108. Schwabe, J.W.R., Chapman, L., Finch, J.T., Rhodes, D. 1993. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA—how receptors discriminate between their response elements. Cell 75:567–578

    Google Scholar 

  109. Smith, D.F., Toft, D.O. 1993. Minireview—steroid receptors and their associated proteins. Mol. Endocrinol. 7:4–11

    Google Scholar 

  110. Smith, P.R., Saccomani, G., Joe, E.H., Angelides, K.J., Benos, D.J. 1991. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc. Natl. Acad. Sci. USA 88:6971–6975

    Google Scholar 

  111. Spooner, P.M., Edelman, I.S. 1975. Further studies on the effect of aldosterone on electrical resistance of toad bladder. Biochim. Biophys. Acta 405:304–314

    Google Scholar 

  112. Stanton, B.A. 1986. Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J. Clin. Invest. 78:1612–1620

    Google Scholar 

  113. Steinmetz, P.R. 1993. The reductionist approach to urinary acidification: scalar similarities. News Physiol. Sci. 8:282–286

    Google Scholar 

  114. Stewart, P.M., Wallace, A.M., Valentino, R., Burt, D., Shackleton, C.H.L., Edwards, C.R.W. 1987. Mineralocorticoid activity of licorice: 11-Beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet 2:821–824

    Google Scholar 

  115. Stoos, B.A., Náray-Fejes-Tóth, A., Carretero, O.A., Ito, S., Fejes-Tóth, G. 1991. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 39:1168–1175

    Google Scholar 

  116. Szerlip, H., Palevsky, P., Cox, M., Blazer-Yost, B. 1991. Relationship of the aldosterone-induced protein, gP70, to the conductive Na+ channel. J. Am. Soc. Nephrol. 2:1108–1114

    Google Scholar 

  117. Tang, M.J., McDonough, A.A. 1992. Low K+ increases Na+-K+-ATPase alpha-subunit and beta-subunit messenger RNA and protein abundance in cultured renal proximal tubule cells. Am. J. Physiol. 263:C436-C442

    Google Scholar 

  118. Truscello, A., Gäggeler, H.P., Rossier, B.C. 1986. Thyroid hormone antagonizes an aldosterone-induced protein: a candidate mediator for the late mineralocorticoid response. J. Membrane Biol. 89:173–183

    Google Scholar 

  119. Truscello, A., Geering, K., Gaeggeler, H.P., Rossier, B.C. 1983. Effect of butyrate on histone deacetylation and aldosteronedependent Na+ transport in the toad bladder. J. Biol. Chem. 258:3388–3395

    Google Scholar 

  120. Truss, M., Bartsch, J., Hache, R.S.G., Beato, M. 1993B. Chromatin structure modulates transcription factor binding to the mouse mammary tumor virus (MMTV) promoter. J. Steroid Biochem. Mol. Biol. 47:1–10

    Google Scholar 

  121. Truss, M., Beato, M. 1993. Steroid hormone receptors—interaction with deoxyribonucleic acid and transcription factors. Endocr. Rev. 14:459–479

    Google Scholar 

  122. Tsukiyama, T., Becker, P.B., Wu, C. 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    Google Scholar 

  123. Tully, D.B., Allgood, V.E., Cidlowski, J.A. 1994. Modulation of steroid receptor-mediated gene expression by vitamin B-6. FASEB J. 8:343–349

    Google Scholar 

  124. Ueda, K., Okamura, N., Hirai, M., Tanigawara, Y., Saeki, T., Kioka, N., Komano, T., Hori, R. 1992. Human p-glycoprotein transports Cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267:24248–24252

    Google Scholar 

  125. Verrey, F. 1990. Regulation of gene expression by aldosterone in tight epithelia. Semin. Nephrol. 10:410–420

    Google Scholar 

  126. Verrey, F. 1994. Antidiuretic hormone action in A6 cells: Effect on apical Cl and Na conductances and synergism with aldosterone for NaCl reabsorption. J. Membrane Biol. 138:65–76

    Google Scholar 

  127. Verrey, F., Digicaylioglu, M., Bolliger, U. 1993. Polarized membrane movements in A6 kidney cells are regulated by aldosterone and vasopressin/vasotocin. J. Membrane Biol. 133:213–226

    Google Scholar 

  128. Verrey, F., Kairouz, P., Schaerer, E., Fuentes, P., Geering, K., Rossier, B.C., Kraehenbuhl, J.P. 1989. Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am. J. Physiol. 256:F1034–F1043

    Google Scholar 

  129. Verrey, F., Kraehenbuhl, J.P., Rossier, B.C. 1989. Aldosterone induces a rapid increase in the rate of Na,K-ATPase gene transcription in cultured kidney cells. Mol. Endocrinol. 3:1369–1376

    Google Scholar 

  130. Verrey, F., Schaerer, E., Zoerkler, P., Paccolat, M.-P., Geering, K., Kraehenbuhl, J.P., Rossier, B.C. 1987. Regulation by aldosterone of Na+,K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 104:1231–1237

    Google Scholar 

  131. Vilella, S., Guerra, L., Helmle-Kolb, C., Murer, H. 1992. Aldosterone actions on basolateral Na+/H+ exchange in Madin-Darby canine kidney cells. Pfluegers Arch. 422:9–15

    Google Scholar 

  132. Wade, J.B., Stanton, B.A., Field, M.J., Kashgarian, M., Giebisch, G. 1990. Morphological and physiological response: time course and sodium dependence. Am. J. Physiol. 259:F88-F94

    Google Scholar 

  133. Walker, B.R., Campbell, J.C., Williams, B.C., Edwards, C.R.W. 1992. Tissue-specific distribution of the NAD+-dependent isoform of 11beta-hydroxysteroid dehydrogenase. Endocrinology 131:970–972

    Google Scholar 

  134. Wang, Z., Brown, D.D. 1991. A gene expression screen. Proc. Natl. Acad. Sci. USA 88:11505–11509

    Google Scholar 

  135. Watlington, C.O., Perkins, F.M., Muson, P.J., Handler, J.S. 1982. Aldosterone and corticosterone binding and effects on Na+ transport in cultured kidney cells. Am. J. Physiol. 242:F610-F619

    Google Scholar 

  136. Wehling, M. 1994. Novel aldosterone receptors—specificity-conferring mechanism at the level of the cell membrane. Steroids 59:160–163

    Google Scholar 

  137. Welling, P.A., Caplan, M., Sutters, M., Giebisch, G. 1993. Aldosterone-mediated Na/K-ATPase expression is alpha(1) isoform specific in the renal cortical collecting duct. J. Biol. Chem. 268:23469–23476

    Google Scholar 

  138. Wiener, H., Nielsen, J.M., Klaerke, D.A., Jørgensen, P.L. 1993. Aldosterone and thyroid hormone modulation of alpha-1-messenger RNA, beta-1-messenger RNA, and Na,K-pump sites in rabbit distal colon epithelium—Evidence for a novel mechanism of escape from the effect of hyperaldosteronemia. J. Membrane Biol. 133:203–211

    Google Scholar 

  139. Wills, N.K., Purcell, R.K., Clausen, C., Millinoff, L.P. 1993. Effects of aldosterone on the impedance properties of cultured renal amphibian epithelia. J. Membrane Biol. 133:17–27

    Google Scholar 

  140. Wolffe, A.P. 1994. Transcription—in tune with the histones. Cell 77:13–16

    Google Scholar 

  141. Wright, A.P.H., Zilliacus, J., McEwan, I.J., Dahlman-Wright, K., Almlof, T., Carlstedt-Duke, J., Gustafsson, J.A. 1993. Structure and function of the glucocorticoid receptor. J. Steroid Biochem. Mol. Biol. 47:11–19

    Google Scholar 

  142. Yamamoto, K., Ikeda, U., Seino, Y., Tsuruya, Y., Oguchi, A., Okada, K., Ishikawa, S.E., Saito, T., Kawakami, K., Hara, Y., Shimada, K. 1993. Regulation of Na,K-adenosine triphosphatase gene expression by sodium ions in cultured neonatal rat cardiocytes. J. Clin. Invest. 92:1889–1895

    Google Scholar 

  143. Yoshinaga, S.K., Peterson, C.L., Herskowitz, I., Yamamoto, K.R. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to thank Bernard Rossier, Jörg Beron and Gillian Hayes for reading the manuscript, Bernard Rossier, Alex Puoti, Haim Garty and Anikó Náray-Fejes-Tóth for the communication of unpublished results, and Christian Gasser for the artwork. The laboratory of the author is supported by Grant 31-39499-93 from the Swiss National Science Foundation and by the Olga Mayenfisch Stiftung, Zürich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verrey, F. Transcriptional control of sodium transport in tight epithelia by adrenal steroids. J. Membarin Biol. 144, 93–110 (1995). https://doi.org/10.1007/BF00232796

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232796

Key words

Navigation