Skip to main content
Log in

Nuclear electrophysiology

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Conclusions

Patch-clamp, fluorescence microscopy and high-resolution EM have yielded new data which question current concepts of ion transport across the nuclear envelope. The current challenge is to prove that NICs play an important role in nuclear function either through their identity with NPCs or parts thereof. Electrophysiological designs must incorporate cell biology approaches as done for putative protein-conducting channels of the ER (Simon & Blobel, 1991, 1992).

Preliminary studies (J.O. Bustamante et al., in preparation), illustrated in Fig. 1, confirm that, as is the case of NPCs, NICs cannot function in an extracellular environment deprived of cytosolic factors. Our current efforts aim at clarifying if the lysate factors required for macromolecular transport through NPCs (e.g., Adam et al., 199la,b) are those required for NIC open-shut gating. Monoclonal antibodies to identified NPC proteins should be helpful in furthering the identification of NICs with NPCs. Our observation of blockade of NIC activity with wheat germ agglutinin, discussed above, supports the idea that NPCs are the structural foundation for NICs. Should NICs be identified with NPCs or otherwise proven essential to nucleocytoplasmic transport, NIC response to cytoplasmic signals would suggest that they are relevant to mediating gene control by transduction and other cytosolic signals (Karin, 1991; Davis, 1992). NIC influence on intranuclear free ion concentrations is potentially important to controlling gene activation, repression, as well as the efficiency and fidelity of gene expression (e.g., Kroeger, 1963; Lezzi & Gilbert, 1970; Leake et al., 1972; Morgan & Curran, 1986; Li & Rokita, 1991; Lippard, 1993). As electrophysiological and cell/molecular biology approaches merge, the prospects improve for the field of nuclear electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, S.A., Sterne-Marr, R., Gerace, L. 1991a. In vitro nuclear protein import using permeabilized mammalian cells. Meth. Cell Biol. 35:469–482

    Google Scholar 

  • Adam, S.A., Sterne Marr, R., Gerace, L. 1991b. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111:807–816

    Google Scholar 

  • Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., Tsien, R.Y. 1991. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697

    Google Scholar 

  • Akey, C.W., Radermacher, N. 1993. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryoelectron microscopy. J. Cell Biol. 122:1–19

    Google Scholar 

  • Bachs, O., Agell, N., Carafoli, E. 1992. Calcium and calmodulin function in the nucleus. Biochim. Biophys. Acta 1113:259–270

    Google Scholar 

  • Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang., B.-K., Kandel, E.R., Tsien, R.Y. 1993. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–226

    Google Scholar 

  • Burke, B. 1990. The nuclear envelope and nuclear transport. Curr. Opin. Cell Biol. 2:514–520

    Google Scholar 

  • Bustamante, J.O. 1992. Nuclear ion channels in cardiac monocytes. Pfluegers Arch. 421:473–485

    Google Scholar 

  • Bustamante, J.O. 1993. Restricted ion flow at the nuclear envelope of cardiac myocytes. Biophys. J. 64:1735–1749

    Google Scholar 

  • Bustamante, J.O. 1994. Open states of nuclear envelope ion channels in cardiac myocytes. J. Membrane Biol. 138:77–89

    Google Scholar 

  • Century, T.J., Fenichel, I.R., Horowitz, S.B. 1970. The concentrations of water. sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J. Cell Sci. 7:5–13

    Google Scholar 

  • Connolly, T., Rapiejko, P.J., Gilmore, R. 1991. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptors. Science 252:1171–1173

    Google Scholar 

  • Davis, L.I. 1992. Control of nucleocytoplasmic transport. Curr. Opin. Cell. Biol. 4:424–429

    Google Scholar 

  • DeFelice, L.J., Dale, B., Kyozuka, K., Santella, L., Tosti, E. 1993. Voltage clamp of the nuclear envelope. Biophys. J. 64:A330

    Google Scholar 

  • Dessev, G.N. 1992. Nuclear envelope structure. Curr. Opin. Cell Biol. 4:430–435

    Google Scholar 

  • Devary, Y., Rosette, C., DiDonado, J.A., Karin, M. 1993. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science 261:1442–1445

    Google Scholar 

  • Dingwall, C. 1990. Plugging the nuclear pore. Nature 346:512–514

    Google Scholar 

  • Dingwall, C. 1991. Transport across the nuclear envelope: enigmas and explanations. BioEssays 13:213–218

    Google Scholar 

  • Dingwall, C., Laskey, R. 1992. The nuclear membrane. Science 258:942–947

    Google Scholar 

  • Gerace, L. 1992. Molecular trafficking across the nuclear pore complex. Curr. Opin. Cell Biol. 4:637–645

    Google Scholar 

  • Giulian, D., Diacumakos, E.G. 1977. The electrophysiological mapping of compartments within a mammalian cell. J. Cell. Biol. 72:86–103

    Google Scholar 

  • Goldfarb, D.S. 1992. Are the cytosolic components of the nuclear, ER, and mitochondrial import apparatus functionally related? Cell 70:185–188

    Google Scholar 

  • Goldman, W.F. 1991. Spatial and temporal resolution of serotonin-induced changes in intracellular calcium in a cultured arterial smooth-muscle cell line. Blood Vessels 28:252–261

    Google Scholar 

  • Hanover, J.A. 1992. The nuclear pore: at the crossroads. FASEB J. 6:2288–2295

    Google Scholar 

  • Hechtenberg, S., Beyersmann, D. 1993. Differential control of free calcium and free zinc levels in isolated bovine liver nuclei. Biochem. J. 289:757–760

    Google Scholar 

  • Hernández-Cruz, A., Sala, F., Adams, P.R. 1990. Subcellular calcium transients visualized by confocal microscopy in a voltageclamped vertebrate neuron. Science 247:858–862

    Google Scholar 

  • Hernández-Cruz, A., Sala, F., Connor, J.A. 1991. Stimulus-induced nuclear Ca2+ signals in fura-2-loaded amphibian neurons. Ann. NY Acad. Sci. 635:416–420

    Google Scholar 

  • Himpens, B., De Smedt, H., Casteels, R. 1992a. Kinetics of nucleocytoplasmic Ca2+ transients in DDT1 MF-2 smooth muscle cells. Am. J. Physiol 263:C978-C985

    Google Scholar 

  • Himpens, B., De Smedt, H., Casteels, R. 1993. Staurosporine induced Ca2+ increase in DDT1MF-2 smooth muscle cells. Am. J. Physiol. 264:C544-C551

    Google Scholar 

  • Himpens B., De Smedt, H., Droogmans, G., Casteels, R. 1992b. Differences in regulation between nuclear and cytoplasmic Ca2+ in cultured smooth muscle cells. Am. J. Physiol. 263:C95-C105

    Google Scholar 

  • Hinshaw, J.E., Carragher, B.O., Milligan, R.A. 1992. Architecture and design of the nuclear pore complex. Cell 69:1133–1141

    Google Scholar 

  • Hoffman, M. 1993. The cell's nucleus shapes up. Science 259:1257–1259

    Google Scholar 

  • Horowitz, S.B., Fenichel, I.R. 1970. Analysis of sodium transport in the amphibian oocyte by extractive and radioautographic techniques. J. Cell Biol. 47:120–131

    Google Scholar 

  • Horowitz, S.B., Paine, P.L. 1976. Cytoplasmic exclusion as a basis for asymmetric nucleocytoplasmic solute distribution. Nature 260:151–153

    Google Scholar 

  • Hurt, E.C. 1993. The nuclear pore complex. FEBS Lett. 325:76–80

    Google Scholar 

  • Innocenti, B., Mazzanti, M. 1993. Identification of a nucleo-cytoplasmic ionic pathway by osmotic shock in isolated mouse liver nuclei. J. Membrane Biol 131:137–142

    Google Scholar 

  • Ito, S., Loewenstein, W.R. 1965. Permeability of a nuclear membrane: changes during normal development and changes induced by growth hormone. Science 150:909–910

    Google Scholar 

  • Jarnik, M., Aebi, U. 1991. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107:291–308

    Google Scholar 

  • Kanno, Y., Ashman, R.F., Loewenstein, W.R. 1965. Nucleus and cell membrane conductance in marine oocytes. Exp. Cell Res. 39:184–189

    Google Scholar 

  • Kanno, Y., Loewenstein, W.R. 1963. A study of the nucleus and cell membranes of oocytes with an intra-cellular electrode. Exp. Cell Res. 31:149–166

    Google Scholar 

  • Karin, M. 1991. Signal transduction and gene control. Curr. Opin. Cell Biol. 3:467–473

    Google Scholar 

  • Kroeger, H. 1963. Chemical nature of the system controlling gene activities in insect cells. Nature 200:1234–1235

    Google Scholar 

  • Leake, R.E., Trench, M.E., Barry, J.M. 1972. Effect of cations on the condensation of hen erythrocyte nuclei and its relation to gene activation. Exp. Cell Res. 71:17–26

    Google Scholar 

  • Lezzi, M., Gilbert, L.I. 1970. Differential effects of K+ and Na+ on specific bands of isolated polytene chromosomes of Chironomus tentans. J. Cell Sci. 6:615–627

    Google Scholar 

  • Li, T., Rokita, S.E. 1991. Selective modification of DNA controlled by an ionic signal. J. Am. Chem. Soc. 113:7771–7773

    Google Scholar 

  • Ling, G.N. 1992. Can we see living structure in a cell? Scann. Microsc. 6:405–450

    Google Scholar 

  • Ling, G.N., Ochsenfeld, M.M., Karreman, G. 1967. Is the cell membrane a universal rate-limiting barrier to the movement of water between the living cell and its surrounding medium? J. Gen. Physiol. 50:1807–1820

    Google Scholar 

  • Lipp, P., Niggli, E. 1993a. Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14:359–372

    Google Scholar 

  • Lipp, P., Niggli, E. 1993b. Microscopic spiral-waves reveal positive feedback in Subcellular calcium signalling. Biophys J. 65:(inpress)

  • Lippard, S.J. 1993. Bioinorganic chemistry: a maturing frontier. Science 261:699–700

    Google Scholar 

  • Loewenstein, W.R. 1964. Permeability of the nuclear membrane as determined with electrical methods. Protoplasmatologia-Handbuch der Protoplasmaforschung 5:26–34

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y. 1962. Some electrical properties of the membrane of a cell nucleus. Nature 195:462–464

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y. 1963a. The electrical conductance and potential across the membrane of some cell nuclei. J. Cell Biol. 16:421–425

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y. 1963b. Some electrical properties of a nuclear membrane examined with a microelectrode. J. Gen. Physiol. 46:1123–1140

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y., Ito, S. 1966. Permeability of the nuclear membrane. Ann NY Acad. Sci. 137:708–716

    Google Scholar 

  • Malviya, A.N., Rogue, P. Vincedon, G. 1990. Stereospecific inositol 1,4,5[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. Proc. Natl Acad. Sci. USA 87:9270–9274

    Google Scholar 

  • Maquat, L.E. 1991. Nuclear mRNA export. Curr. Opin. Cell Biol. 3:1004–1012

    Google Scholar 

  • Marx, J. 1993. Forging a path to the nucleus. Science 260:1558–1560

    Google Scholar 

  • Matzke, A.J.M., Behensky, C., Weiger, T., Matzke, M.A. 1992. A large conductance ion channel in the nuclear envelope of a higher plant cell. FEBS Lett. 302:81–85

    Google Scholar 

  • Matzke, M.A., Matzke, A.J.M. 1986. Visualization of mitochondria and nuclei in living plant cells by the use of a potential-sensitive fluorescent dye. Plant Cell Environ. 9:73–77

    Google Scholar 

  • Matzke, A.J.M., Matzke, M.A. 1991. The electrical properties of the nuclear envelope and their possible role in the regulation of eukaryotic gene expression. Bioelectrochem. Bioenerg. 25:357–370

    Google Scholar 

  • Matzke, M.A., Matzke, A.J.M., Neuhaus, G. 1988. Cell age-related differences in the interaction of a potential-sensitive fluorescent dye with nuclear envelopes of Acetabularia mediterranea. Plant Cell Environ. 11:157–163

    Google Scholar 

  • Matzke, A.J.M., Weiger, T.M., Matzke, M.A. 1990. Detection of a large cation-selective channel in nuclear envelopes of avian erythrocytes. FEBS Lett. 271:161–164

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J., Cohen, J., Malter, H. 1990. Ion channels in the nuclear envelope. Nature 343:764–767

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J., Smith, E.F. 1991. Ion channels in murine nuclei during early developments and in fully differentiated adult cells. J. Membrane Biol. 121:189–198

    Google Scholar 

  • Meek, D.W., Street, A.J. 1992. Nuclear protein phosphorylation and growth control. Biochem. J. 287:1–15

    Google Scholar 

  • Miller, M., Park, M.K., Hanover, J.A. 1991. Nuclear pore complex: structure, function and regulation. Physiol. Rev. 71:909–949

    Google Scholar 

  • Missiaen, L., De Smedt, H., Droogmans, G., Himpens, B., Casteels, R. 1992. Calcium ion homeostasis in smooth muscle. Pharmacol. Ther. 56:191–231

    Google Scholar 

  • Moore, M.S., Blobel, G. 1993. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661–663

    Google Scholar 

  • Morgan, J.I., Curran, C. 1986. Role of ion flux in the control of c-fos expression. Nature 322:552–555

    Google Scholar 

  • Nigg, E.A., Baeuerle, P.A., Lührmann, R. 1991. Nuclear import-export: in search of signals and mechanisms. Cell 66:15–22

    Google Scholar 

  • Oberleithner, H., Schuricht, B., Wünsch, S., Schneider, S., Püschel, B. 1993. Role of H+ ions in volume and voltage of epithelial cell nuclei. Pfluegers Arch. 423:88–96

    Google Scholar 

  • Paine, P.L. 1975. Nucleocytoplasmic movement of fluorescent tracers microinjected into living salivary gland cells. J. Cell Biol. 66:652–657

    Google Scholar 

  • Paine, P.L., Horowitz, S.B. 1980. The movement of material between nucleus and cytoplasm. Cell Biol. 4:299–338

    Google Scholar 

  • Paine, P.L., Moore, L.C., Horowitz, S.B. 1975. Nuclear envelope permeability. Nature 254:109–114

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+ and Cl between nucleus and cytoplasm in Chironomus salivary gland cells. J. Membrane Biol. 33:41–61

    Google Scholar 

  • Panté, N. Aebi, U. 1993. The nuclear pore complex. J. Cell Biol. 122:977–983

    Google Scholar 

  • Papageorgiou, P., Morgan, K.G. 1990. The nuclear-cytoplasmic [Ca2+] gradient in single mammalian vascular smooth-muscle cells. Proc. Soc. Exp. Biol. Med. 193:331–334

    Google Scholar 

  • Poenie, M. 1990. Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11:85–91

    Google Scholar 

  • Przywara, D.A., Bhave, S.V., Bhave, A., Wakade, T.D., Wakade, A.R. 1991. Stimulated rise in neuronal calcium is faster and greater in the nucleus than in the cytosol. FASEB J. 5:217–222

    Google Scholar 

  • Reichelt, R., Holzenburg, A., Buhle, E.L., Jr., Jarnik, M., Engel, A., Aebi, U. 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110:883–894

    Google Scholar 

  • Silver, P.A. 1991. How proteins enter the nucleus. Cell 64:489–497

    Google Scholar 

  • Simon, S.M., Blobel, G. 1991. A protein-conducting channel in the endoplasmic reticulum. Cell 65:371–380

    Google Scholar 

  • Simon, S.M., Blobel, G. 1992. Signal peptides open protein-conducting channels in E. coli. Cell 69:677–684

    Google Scholar 

  • Stochaj, U., Silver, P. 1992. Nucleocytoplasmic traffic of proteins. Eur. J. Cell Biol. 59:2–22

    Google Scholar 

  • Tabares, L., Mazzanti, M., Clapham, D.E. 1991. Chloride channels in the nuclear membrane. J. Membrane Biol. 123:49–54

    Google Scholar 

  • Takamatsu, T., Wier, W.G. 1990. High temporal resolution video imaging of intracellular calcium. Cell Calcium 11:111–120

    Google Scholar 

  • Thastrup, O., Dawson, A.P., Scharff, O., Foder, B., Cullen, P.J., Drobak, B.K., Bjerrum, P.J., Christensen, S.B., Hanley, M.R. 1989. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agent Actions 27:17–23

    Google Scholar 

  • Waybill, M.M., Yelamarty, R.V., Zhang, Y., Scaduto, R.C., Jr., LaNoue, K.F., Hsu, C.-J., Smith, B.C., Tilloston, D.L., Yu, F.T.S., Cheung, J.Y. 1991. Nuclear calcium transients in cultured rat hepatocytes. Am. J. Physiol. 261:E49-E57

    Google Scholar 

  • Whiteside, S.T., Goodburn, S. 1993. Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation. J. Cell Sci. 104:949–955

    Google Scholar 

  • Wiener, J., Spiro, D., Loewenstein, W.R. 1965. Ultrastructure and permeability of nuclear membranes. J. Cell Biol. 27:107–117

    Google Scholar 

  • Wonderlin, W.F., French, R.J. 1991. Ion channels in transit: voltagegated Na and K channels in axoplasmic organelles of the squid Loligo pealei. Proc. Natl. Acad. Sci USA 88:4391–4395

    Google Scholar 

  • Yamaguchi, M. 1992. Effect of calcium-binding protein regucalcin on Ca2+ transport system in rat liver nuclei: stimulation of Ca2+ release. Mol. Cell. Biochem. 113:63–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author thanks (in alphabetical order) the intellectual contributions of Drs. Christopher W. Akey, Gregory S. Beckler (Promega), Louis J. DeFelice, Colin Dingwall, Alexander Fabiato, Julio M. Fernández, Larry Gerace, John A. Hanover, Bertil Hille, Stuart L. Jacobson, W. Jonathan Lederer, Andrejs Liepins, Gilbert N. Ling, Michele Mazzanti, Ernst Niggli, Sanford M. Simon, Walter Stühmer, and W. Gil Wier. Special thanks are tendered to Drs. Dingwall, Gerace, Hanover and Liepins for their observations on nuclear electrophysiology within the context of cell/molecular biology. Thanks are also extended to Drs. Lederer and Wier for discussions on fluorescence microscopy of Ca2+ transients. Dr. Niggli provided the preprint of his paper, with P. Lipp, confirming previous observations that cardiomyocyte nuclei behave as a barrier to intracellular Ca2+ waves. Drs. DeFelice and Mazzanti provided a draft of their review on the biophysics of the nuclear envelope. This work is supported by the American Heart Association, Maryland Affiliate. Institutional support and facilities have come through Drs. C. William Balke, Michael R. Gold, W. Gil Wier and W. Jonathan Lederer, to whom the author is deeply grateful. This work is dedicated to my parents for introducing me to scientific curiosity and for their constant incentive and support. A special dedication to my father who recently passed away.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, J.O. Nuclear electrophysiology. J. Membarin Biol. 138, 105–112 (1994). https://doi.org/10.1007/BF00232638

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232638

Key words

Navigation