Skip to main content
Log in

On the spectral dissipation of ocean waves due to white capping

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Summary

The effect of white capping on the spectral energy balance of surface waves is investigated by expressing the white-cap interactions in terms of an equivalent ensemble of random pressure pulses. It is shown first that the source function for any non-expansible interaction process which is weak-in-the-mean is quasi-linear. In the case of white capping, the damping coefficient is then shown to be proportional to the square of the frequency, provided the wave scales are large compared with the white-cap dimensions. The remaining free factor is determined indirectly from consideration of the spectral energy balance. The proposed white-capping dissipation function is consistent with the structure of the energy balance derived from JONSWAP, and the existence of a δ −5 spectrum governed by a non-local energy balance between the atmospheric input, the nonlinear energy transfer and dissipation. However, closure of the energy balance involves hypotheses regarding the structure of the atmospheric input function which need to be tested by further measurements. The proposed set of source functions may nevertheless be useful for numerical wave-prediction. According to the model, nearly all the momentum transferred across the air-sea interface enters the wave field. For fetchlimited and fully developed spectra in a stationary, uniform wind field, the drag coefficient remains approximately constant. However, for more general wind conditions, this will not be the case and the wave spectrum should be included in an accurate parameterisation of the air-sea momentum transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, T. P.: 1968, On the Generation, Dissipation and Prediction of Ocean Wind Waves, J. Geophys. Res. 73, 513–530.

    Google Scholar 

  • Barnett, T. P. and Wilkerson, J. C.: 1967, On the Generation of Wind Waves as Inferred from Airborne Radar Measurements of Fetch-Limited Spectra, J. Mar. Res. 25, 292–328.

    Google Scholar 

  • Brocks, K. and Krügermeyer, L.: 1972, in A. L. Gordon (ed.), The Hydrodynamic Roughness of the Sea Surface, Studies in Physical Oceanography, Gordon and Breach, New York, 75–92. (Also Report No. 14, Inst, für Radiometeorologie, Hamburg, 1970.)

    Google Scholar 

  • Darbyshire, J. and Simpson, J. H.: 1967, Numerical Prediction of Wave Spectra over the North Atlantic, Deutsche Hydrog. Z. 20, 18.

    Google Scholar 

  • Davis, R. E.: 1969, On the High Reynolds Number Flow over a Wavy Boundary, J. Fluid Mech. 36, 337–346.

    Google Scholar 

  • Davis, R. E.: 1970, On the Turbulent Flow over a Wavy Boundary, J. Fluid Mech. 42, 721–731.

    Google Scholar 

  • Dobson, F. W.: 1971a, Measurements of Atmospheric Pressure on Wind-Generated Sea Waves, J. Fluid Mech. 48, 91–127.

    Google Scholar 

  • Dobson, F. W.: 1971b, The Damping of a Group of Sea Waves, Boundary-Layer Meteorol. 1, 399–410.

    Google Scholar 

  • Dunckel, M., Hasse, L., Krügemeijer, L., Schriever, D., and Wucknitz, J.: 1974, Turbulent Fluxes of Momentum, Heat and Water Vapor in the Atmospheric Surface Layer at Sea During ATEX, Boundary-Layer Meteorol., this issue p. 81.

  • Elliott, J. A.: 1972, Microscale Pressure Fluctuations Near Waves Being Generated by the Wind, J. Fluid Mech. 54, 427–448.

    Google Scholar 

  • Ewing, J. A.: 1971, A Numerical Wave Prediction Method for the North Atlantic Ocean, Deutsche Hydrog. Z. 24, 241–261.

    Google Scholar 

  • Gelci, R., Cazalé, H., and Vassal, J.: 1957, Prévision de la Houle. La Méthode des Densités Spectroangulaires, Bull. Inform. Comité Central Oceanogr. d'étude Cotes 9, 416.

    Google Scholar 

  • Gelci, R. and Devillaz, E.: 1970, Le Calcul Numérique de l'état de la Mer, Houille blanche 25, 117.

    Google Scholar 

  • Harris, D. L.: 1966, The Wave Driven Wind, J. Atmos. Sci. 23, 688–693.

    Google Scholar 

  • Hasse, L.: 1970, ‘On the Determination of the Vertical Transports of Momentum and Heat in the Atmospheric Boundary Layer at Sea’, Tech. Rep. 188, Dept. Oceanogr., Oregon State Univ., Ref. No. 70-20. (Also Hamburger Geophys. Einzelschr. 11 (1970).)

  • Hasselmann, K.: 1960, Grundgleichungen der Seegangsvoraussage. Schiffstechnik 7, 191–195.

    Google Scholar 

  • Hasselmann, K.: 1962, On the Non-Linear Energy Transfer in a Gravity-Wave Spectrum. I: General Theory, J. Fluid Mech. 12, 481–500.

    Google Scholar 

  • Hasselmann, K.: 1963a, On the Non-Linear Energy Transfer in a Gravity-Wave Spectrum. II: Conservation Theorems, Wave-Particle Correspondence, Irreversibility, J. Fluid Mech. 15, 273–281.

    Google Scholar 

  • Hasselmann, K.: 1963b, On the Non-Linear Energy Transfer in a gravity-wave Spectrum. III: Computation of the Energy Flux and Swell-Sea Interaction for a Neumann Spectrum, J. Fluid Mech. 15, 385–398.

    Google Scholar 

  • Hasselmann, K.: 1967, Nonlinear Interactions Treated by the Methods of Theoretical Physics (with Application to the Generation of Waves by Wind), Proc. Roy. Soc. A 299, 77–100.

    Google Scholar 

  • Hasselmann, K.: 1968, in M. Holt (ed.), ‘Weak-Interaction Theory of ocean Waves’, Basic Developments in Fluid Dynamics 2, 117–182.

  • Hasselmann, K.: 1971, On the Mass and Momentum Transfer Between Short Gravity Waves and Larger-Scale Motions, J. Fluid Mech. 50, 189–206.

    Google Scholar 

  • Hasselmann, K. and Collins, J. I.: 1968, Spectral Dissipation of Finite-Depth Gravity Waves due to Turbulent Bottom Friction, J. Mar. Res. 26, 1–12.

    Google Scholar 

  • Hassemann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: 1973, Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), Deutsche Hydrog. Z., Suppl. A (8ℴ), No. 12.

  • Inoue, T.: 1967, On the Growth of the Spectrum of a Wind Generated Sea According to a Modified Miles-Phillips Mechanism and its Application to Wave Forecasting, Geophys. Sci. Lab. Rep. No. TR 67–5.

    Google Scholar 

  • Jeffreys, J.: 1924, On the Formation of Waves by Wind Proc. Roy. Soc. A107, 189–206.

    Google Scholar 

  • Lai, R. J. and Shemdin, O. H.: 1971, Laboratory Investigation of Air Turbulence over Simple Water Waves, J. Geophys. Res. 76, 7334–7350.

    Google Scholar 

  • Lamb, H.: 1932, Hydrodynamics, 6th ed., Cambridge University Press.

  • Long, R.: 1971, ‘On Generation of Ocean Waves by a Turbulent Wind’, Ph. D. Thesis, Univ. Miami.

  • Longuet-Higgins, M. S.: 1963, The Generation of Capillary Waves by Steep Gravity Waves, J. Fluid Mech. 16, 138–159.

    Google Scholar 

  • Longuet-Higgins, M. S.: 1969, On Wave-Breaking and the Equilibrium Spectrum of Wind-Generated Waves, Proc. Roy. Soc. A 310, 151–159.

    Google Scholar 

  • Longuet-Higgins, M. S.: 1973a, On the Form of the Highest Progressive and Standing Waves in Deep Water, Proc. Roy Soc. A 331, 445–546.

    Google Scholar 

  • Longuet-Higgins, M. S.: 1973b, A Model of FJow Separation at a Free Surface, J. Fluid Mech. 57, 129–148.

    Google Scholar 

  • Miles, J. W.: 1957, On the Generation of Surface Waves by Shear Flow, J. Fluid Mech. 3, 185–204.

    Google Scholar 

  • Mitsuyasu, H.: 1968, On the Growth of the Spectrum of Wind-Generated Waves', I, Rep. Res. Inst. Appl. Mech., Kyushu Univ. 16, 459–482.

    Google Scholar 

  • Mitsuyasu, H.: 1969, On the Growth of the Spectrum of Wind-Generated Waves, II, Rep. Res. Inst. Appl. Mech., Kyushu Univ. 17, 235–248.

    Google Scholar 

  • Mitsuyasu, H., Nakayama, and Komori, T.: 1971, Observations of the Wind and Waves in Hakata Bay, Rep. Res. Inst. Appl. Mech., Kyushu Univ. 19, 37–74.

    Google Scholar 

  • Peierls, R. E.: 1955, Quantum Theory of Solids, Oxford, Univ. Press.

    Google Scholar 

  • Phillips, O. M.: 1958, The Equilibrium Range in the Spectrum of Wind-Generated Waves, J. Fluid Mech. 4, 426–434.

    Google Scholar 

  • Phillips, O. M.: 1959, The Scattering of Gravity Waves by Turbulence, J. Fluid Mech. 5, 177–192.

    Google Scholar 

  • Phillips, O. M.: 1963, On the Attenuation of Long Gravity Waves by Short Breaking Waves, J. Fluid Mech. 16, 321–332.

    Google Scholar 

  • Phillips, O. M.: 1966, The Dynamics of the Upper Oceam, Camb. Univ. Press.

  • Pierson, W. J. Jr. and Moskowitz, L.: 1964, A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii, J. Geophys. Res. 69, 5181–5190.

    Google Scholar 

  • Pierson, W. J. Jr., Tick, L. J., and Baer, L.: 1966, ‘Computer Based Procedure for Preparing Global Wave Forecasts and Wind Field Analysis Capable of Using Wave Data Obtained from a Spacecraft’, Sixth Symposium on Naval Hydrodynamics, Washington, D.C., 499.

  • Pond, S., Phelps, G. T., Paquin, J. E., McBean, G., and Stewart, R. W.: 1971, Measurements of the Turbulent Fluxes of Momentum, Moisture, and Sensible Heat over the Ocean, J. Atmos. Sci. 28, 901–917.

    Google Scholar 

  • Ross, D. B., Cardone, V. J., and Conaway, J. W. Jr.: 1970, Laser and Microwave Observations of Sea-Surface Conditions for Fetch-limited 17- to 25-m s−1 Winds, IEEE Trans. GE-8, 326–336.

    Google Scholar 

  • Schule, J. R., Simpson, L. S., and Deleonibus, P. S.: 1971, A Study of Fetch-Limited Wave Spectra with an Airborne Laser, J. Geophys. Res. 76, 4160–4171.

    Google Scholar 

  • Schwarz, L. W.: 1972, ‘Analytic Continuation of Stokes Expansion for Gravity Waves’, Ph. D. dissertation, Stanford Univ.

  • Smith, S. D.: 1970, Thrust-Anemometer Measurements of Wind Turbulence, Reynolds Stress and Drag Coefficient over Sea, J. Geophys. Res. 75, 6758–6770.

    Google Scholar 

  • Snyder, R. L.: 1973, A Field Study of the Atmospheric Pressure Field Above Surface Waves, Submitted to J. Mar. Res.

  • Snyder, R. L. and Cox, C. S.: 1966, A Field Study of the Wind Generation of Ocean Waves, J. Mar. Res. 24, 141–178.

    Google Scholar 

  • Townsend, A. A.: 1972, Flow in Deep Turbulent Boundary over a Surface Disturbed by Water Waves, J. Fluid Mech. 55, 719–735.

    Google Scholar 

  • Valenzuela, G. R. and Laing, M. B.: 1972, Non-Linear Energy Transfer in Gravity-Capillary Wave Spectra, with Applications, J. Fluid Mech. 54, 507–520.

    Google Scholar 

  • Volkov, Yu. A. and Mordukhovich, M. I.: 1971, Spectra of Turbulent Fluxes of Momentum and Heat over a Wavy Sea Surface, Izv. Atmos. Ocean. Phys. 7, 18–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution from the Sonderforschungsbereich ‘Meeresforschung Hamburg’ of the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasselmann, K. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorol 6, 107–127 (1974). https://doi.org/10.1007/BF00232479

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232479

Keywords

Navigation