Skip to main content
Log in

Molecular and biophysical view of the Ca channel: A hypothesis regarding oligomeric structure, channel clustering, and macroscopic current

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aiba, S., Creazzo, T.L. 1993. A comparison of the number of dihydropyridine receptors with the number of functional L-type Ca channels and in embryonic heart. Circ. Res. 72:396–402

    Google Scholar 

  • Argibay, J.A., Fischmeister, R., Hartzell, H.C. 1988. Inactivation, reactivation and pacing dependence of Ca current in frog cardiocytes: correlation with current density. J. Physiol. 401:201–226

    Google Scholar 

  • Arreola, J., Dirksen, R.T., Shieh, R.-C., Williford, D.J., Sheu, S.-S. 1991. Ca current and current transients under action potential clamp in guinea-pig ventricle myocytes. Am. J. Physiol. 261:C393-C397

    Google Scholar 

  • Bean, B. 1985. Two kinds of Ca channels in canine atrial cells. J. Gen. Physiol. 86:1–30

    Google Scholar 

  • Bean, B., Nowycky, M.C., Tsien, R.W. 1984. β-adrenergic modulation of Ca channels in frog ventricular heart cells. Nature 307:371–375

    Google Scholar 

  • Bean, B., Rios, E. 1989. Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J. Gen. Physiol. 94:64–93

    Google Scholar 

  • Bean, B.P. 1989. Multiple types of Ca channels in heart muscle and neurons. NY Acad. Sci. 560:334–345

    Google Scholar 

  • Brehm, P., Eckert, R. 1978. Ca entry leads to inactivation of Ca current in Paramecium. Science 202:1203–1206

    Google Scholar 

  • Brehm, P., Eckert, R., Tillotson, D. 1980. Ca-mediated inactivation of Ca current in Paramecium. J. Physiol. 306:193–203

    Google Scholar 

  • Brown, A.M., Birnbaumer, L. 1990. Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol. 52:197–213

    Google Scholar 

  • Cachelin, A.B., DePeyer, J.E., Kokubun, S., Reuter, H. 1983. Ca channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304:462–464

    Google Scholar 

  • Callewaert, G., Lipp, P., Pott, L., Carmaliet, E. 1991. Highresolution measurement and calibration of Ca-transients using Indo-1 in guinea-pig atrial myocytes under voltage clamp. Cell Calcium 12:269–277

    Google Scholar 

  • Campbell, D.L., Giles, W.R., Hume, J.R., Nole, D., Shibata, E.F. 1988. Ion transfer characteristics of the Ca current in bullfrog atrial myocytes. J. Physiol. 403:239–266

    Google Scholar 

  • Catterall, W. 1991. Functional subunit structure of voltage-gated calcium channels. Science 253:1551–1553

    Google Scholar 

  • Cavalie, A., Ochi, R., Pelzer, D., Trautwein, W. 1983. Elementary channels through Ca channels in guinea-pig myocytes. Pfluegers Arch. 398:284–297

    Google Scholar 

  • Cavalie, A., Pelzer, D., Trautwein, W. 1986. Fast and slow gating behavior of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pfluegers Arch. 406:241–258

    Google Scholar 

  • Chad, J.E., Eckert, R. 1984. Ca domains associated with individual currents can account for anomalous voltage relations of Ca-dependent responses. Biophys. J. 45:993–999

    Google Scholar 

  • Choi, K.L., Aldrich R.W., Yellen, G. 1991. TEA blockade distinguishes two inactivation mechanisms in voltage-activated K channels. Proc. Nat. Acad. Sci. USA 88:5092–5095

    Google Scholar 

  • Clay, J.R., DeFelice, L.J. 1983. Relationship between membrane excitability and single channel open-close kinetics. Biophys. J. 42:151–157

    Google Scholar 

  • Curds, B., Catterall, W.A. 1986. Reconstruction of the voltagesensitive Ca channel purified from skeletal muscle transverse tubules. Biochemistry 25:3077–3083

    Google Scholar 

  • Curtis, B.M., Catterall, W.A. 1986. Reconstitution of the voltagesensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 25, 3077–3083

    Google Scholar 

  • DeFelice, L.J. 1983. Reconstruction of the nerve action potential from single-channel fluctuations. Bull. Am. Phys. Soc. 28:358a (Abstr.)

    Google Scholar 

  • DeFelice L.J. 1989. Excitability and current kinetics in the freerunning membrane. In: Noise in Physical Systems, A. Ambrozy, editor, pp. 303–312. Elsevier, Amsterdam

    Google Scholar 

  • DeFelice L.J., Goolsby, W., Mazzanti, M. (1989). K Channels and the repolarization of cardiac cells. In: Embryonic Origins of Defective Heart Development, M. Kirby, D. Bookman, editors. Ann. N.Y. Acad. Sci. 558:174–184

  • DeFelice, L.J., Clay, J.R. 1983. Membrane current and membrane potential from single-channel kinetics In: Single-Channel Recording, B. Sakmann and E. Neher, editors, pp. 323–341. Plenum, New York

    Google Scholar 

  • DeFelice, L.J., Goolsby, W.N., Huang, D. 1985. Membrane noise and excitability. In: Noise in Physical Systems. A. D'Amico and P. Mazzetti, editors, pp. 35–45. Elsevier, Amsterdam

    Google Scholar 

  • DeFelice, L.J., Levi, R. 1984. Reconstructing the cardiac action potential from single-channel kinetics. p. 280. IUPAB 8th Intl. Biophys. Congress, Bristol, UK

  • Doerr, T., Denger R., Trautwein W. 1989. Ca currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pfluegers Arch. 413:599–603

    Google Scholar 

  • Doerr, T., Denger R., Trautwein W. 1990. Ionic currents contributing to the action potential in single ventricular myocytes of the guinea-pig studied with action potential clamp. Pfluegers Arch. 416:230–237

    Google Scholar 

  • Ellis, S.B., Williams, M.E., Wayes, N.R., Brenner, R., Sharp, A.H., Leung, A.T., Campbell, K.P., McKenna, E., Koch, W.J., Hui, A., Schwartz, A., Harpold, H.M. 1988. Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664

    Google Scholar 

  • Fischmeister, R., Hartzell, H.C. 1987. cGMP regulates the Ca current in single cells from frog ventricle. J. Physiol. 387:453–472

    Google Scholar 

  • Fischmeister, R., DeFelice, L.J., Ayer, R.K., Jr., Levi, R., DeHaan, R.L. 1984. Channel currents during spontaneous action potentials in embryonic chick heart cells. Biophys. J. 46:267–272

    Google Scholar 

  • Fischmeister, R., Hartzell, H.C. 1986. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376:183–202

    Google Scholar 

  • Fischmeister, R., Horackova, M. 1983. Variation of intracellular Ca following Ca current in heart. Biophys. J. 41:341–348

    Google Scholar 

  • Flockerzi, V., Oeken, HJ., Hofmann, F., Pelzer, D., Cavalier, A., Trautwein, W. 1986. Purified dihydropyridine-binding site from skeletal muscle T-tubules is a functional calcium channel. Nature 323:66–68

    Google Scholar 

  • Froehner, S.C. 1991. The submembrane machinery for nicotinic ACh receptor clustering. J. Cell Biol. 114:1–7

    Google Scholar 

  • Fuiji, S., Ayer, R.K., DeHaan, R.L. 1988. Development of the fast Na current in early embryonic chick heart cells. J. Membrane Biol. 101:209–223

    Google Scholar 

  • Hadley, R.W., Lederer, W.J. 1991. Ca and voltage inactivate Ca channels in guinea-pig ventricular myocytes through independent mechanisms. J. Physiol. 44:257–268

    Google Scholar 

  • Hadley, R.W., Hume, J.R. 1987. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J. Physiol. 389:205–222

    Google Scholar 

  • Hagiwara, S., Nakajima, S. 1966. Effects of intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle. J. Gen. Physiol. 49:870–818

    Google Scholar 

  • Hartzell, H.C. 1988. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol. 52:165–247

    Google Scholar 

  • Hartzell, H.C., Duchatelle-Gourdon, I. 1992. Structure and neural modulation of cardiac Ca channels. J. Cardiovasc. Electrophysiol. 3:567–578

    Google Scholar 

  • Hartzell, H.C., Fischmeister, R. 1986. Opposite effects of cGMP and cAMP on Ca current in single heart cells. Nature 323:273–275

    Google Scholar 

  • Hartzell, H.C., Mèry, P.-F., Fischmeister, R., Szabo, G. 1991. Sympathetic regulation of cardiac Ca current is due exclusively to cAMP-dependent phosphorylation. Nature 351:573–576

    Google Scholar 

  • Hartzell, H.C., White, R. 1991. Regulation of the voltage-gated Ca current by intracellular free Mg studied by internal perfusion of single cardiac myocytes. In: Mg and Excitable Membranes. P. Strata and E. Carbonne, editors, pp. 71–95. Springer-Verlag, Berlin.

    Google Scholar 

  • Harvey, R.D., Jurevicius, J.A., Hume J.R. 1991. Intracellular Na modulates the cAMP-dependent regulation of ion channels in the heart. Proc. Nat. Acad. Sci. USA 88:6946–6950

    Google Scholar 

  • Hess, P., Lansman, J.B., Tsien, R.W. 1986. Ca channel selectivity for divalent and monovalent cations. J. Gen. Physiol. 88:293–319

    Google Scholar 

  • Hess, P., Lansman, J.B., Tsien, R.W. 1984. Different modes of Ca channel gating behavior favoured by dihydropyridine Ca agonists and antagonists, Nature 311:538–544

    Google Scholar 

  • Hess, P., Tsien, R.W. 1984. Mechanism of ion permeation through Ca channels. Nature 309:453–456

    Google Scholar 

  • Hirano, Y., January, C.T., Fozzard, H.A. 1989. Characteristics of L and T Ca currents in canine cardiac Purkinje cells. Am. J. Physiol. 256:H1478-H1492

    Google Scholar 

  • Hoshi, T., Zagotta, W.N., Aldrich, R.W. 1990. Biophysical and molecular mechanisms of Shaker K channel inactivation. Science. 250:533–538

    CAS  PubMed  Google Scholar 

  • Hume, J.R., Giles, W. 1983. Ionic currents in single isolated bullfrog atrial cells. J. Gen. Physiol. 81:153–194

    Google Scholar 

  • Hume, J.R., Levesque, P.C. 1991. Response to “Na-Ca exchange.” Science 251:1370–1371

    Google Scholar 

  • Imredy, J.P., Yue D.T. 1992. Sub-microscopic Ca diffusion mediates inhibitor coupling between individual Ca channels. Neuron 9(2):197–207

    Google Scholar 

  • Isacoff E.Y., Jan Y.N., Jan, L.Y. 1990 Evidence for the formation of heteromultimeric k channels in Xenopus oocytes. Nature 345:530–534

    Google Scholar 

  • Isacoff E.Y., Jan, Y.N., Jan, L.Y. 1991. Putative receptor for the cytoplasmic inactivation gate in the Shaker K current. Nature 353:87–90

    Google Scholar 

  • Jahn, H., Nastainczyk, W., Rohrkasten, A., Schneider, T., Hofmann, F. 1988. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur. J. Kochern. 178:535–542

    Google Scholar 

  • Johnson E.A., Lemieux, R.D. 1991. Na-Ca exchange. Science 251:1370

    Google Scholar 

  • Josephson, I.R., Sanchez-Chapula, J., Brown, A.M. 1984. A comparison of Ca currents in rat and guinea-pig single ventricular cells. Circ. Res. 54:144–156

    Google Scholar 

  • Josephson, I., Sperelakis, N. 1990. Fast activation of cardiac Ca channel gating charge by the dihydropyridine agonist, BAY K 8644. Biophys. J. 58:1307–1311

    Google Scholar 

  • Kass, R.S., Sanguinetti, M.C. 1984. Inactivation of Ca channel current in the calf cardiac Purkinje fiber. Evidence for the voltage- and Ca-mediated mechanisms. J. Gen. Physiol. 84:705–726

    Google Scholar 

  • Katsushige, O., Fozzard, H.A. 1992. Phosphorylation restores activity of L-type Ca channels after rundown in inside-out patches from rabbit cardiac cells. J. Physiol. 454:673–688

    Google Scholar 

  • Kawano, S., DeHaan, R.L. 1989, Low threshold current is major Ca current in embryonic chick ventricle cells. Am. J. Physiol. 256:H1505–1508

    Google Scholar 

  • Kim, H.S., Wei, X., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, E., Birnbaumer, L. 1990. Studies on the structural requirements for the activity of the skeletal muscle dihydropyridine receptor/slow Ca channel: Allosteric regulation of dihydropyridine binding in the absence of alpha-2 and beta components of the purified protein complex. J. Biol. Chem. 265:11858–11862

    Google Scholar 

  • Klockner, U., Isenberg, G. 1991. Currents through single L-type Ca channels studied at 2 mm [Ca] 0 and 36°C in myocytes from urinary bladder of the guinea-pig. J. Physiol. 438:228P

    Google Scholar 

  • Kohlhardt, M., Krause, H., Kubler, M., Herdey, A. 1975. Kinetics of inactivation and recovery of the slow inward current in the mammalian ventricular myocardium. Pfluegers Arch. 355:1–17

    Google Scholar 

  • Kokubun, S., Reuter, H. 1984. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc. Natl. Acad. Sci. USA 81:4824–4827

    Google Scholar 

  • Komori, S., Bolton, T.B. 1991. Inositol triphosphate releases stored Ca to block voltage dependent Ca channels in single smooth muscle cells. Pfluegers Arch. 418:437–441

    Google Scholar 

  • Krafte, D.S., Snutch, T.P., Leonard, J.P., Davidson, N., Lester, H.A. 1988. Evidence for the involvement of more than one mRNA species in controlling the inactivation process of rat and rabbit brain Na channels express in Xenopus oocyte. J. Neurol. Sci. 8:2859–2868

    Google Scholar 

  • Kraner, S.D., Tanaka, J., Barchi, R. 1984. Purification and functional reconstruction of voltage sensitive Na channel from rabbit T-tubular membrane. J. Biol. Chem. 260:6341–6347

    Google Scholar 

  • Lacerda, A.E., Brown, A.M. 1989. Nonmodal gating of cardiac Ca channels as revealed by dihydropyridines. J. Gen. Physiol. 93:1243–1273

    Google Scholar 

  • Lacerda, A.E., Kim, H.S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., Brown, A.M. 1991. Normalization of current kinetics by interaction between the α 1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca22+ channel. Nature 352:527–530

    Google Scholar 

  • Lacerda, A.E., Rampe, D., Brown, A.M. 1988. Effects of protein kinase C activators on cardiac Ca channels. Nature 335:249–251

    Article  CAS  PubMed  Google Scholar 

  • Lansman, J.B., Hess, P., Tsien, R.W. 1986. Blockade of current through single Ca channels by Cd, Mg, and Ca. J. Gen. Physiol. 88:321–347

    Google Scholar 

  • Leblanc, N., Hume, J.R. 1990. Na current-induced release of Ca from cardiac sarcoplasmic reticulum. Science 248:372–376

    CAS  PubMed  Google Scholar 

  • Leblanc, N., Hume, J.R. 1991. Response to “Na-Ca exchange.” Science 251:1370–1371

    Google Scholar 

  • Lederer, W.J., Niggli, E., Hadley, R.W. 1990. Na-Ca exchange in excitable cells: fuzzy space. Science 248:283

    Google Scholar 

  • Lederer, W.J., Niggli, E., Hadley, R.W. 1991. Response to “Na-Ca exchange.” Science 251:1371

    Google Scholar 

  • Lee, K.S., Marban, E., Tsien, R.W. 1985. Inactivation of CA channels in mammalian heart cells: joint dependence on membrane potential and intercellular Ca. J. Physiol. 364:395–411

    Google Scholar 

  • Levi, R., DeFelice, L.J. 1986. Na-conducting channels in cardiac membranes in low Ca. Biophys. J. 50:5–9

    Google Scholar 

  • Lew, W., Hryshko, L.W., Bers, O.M. 1991. DHP receptors are primarily functional L-type Ca channels in rabbit ventricular myocytes. Circ. Res. 69:1139–1145

    Google Scholar 

  • Liu Y.-M., DeFelice, L.J., Mazzanti, M. 1992. Na channels that remain open throughout the cardiac action potential Biophys. J. 63:654–662

    Google Scholar 

  • Lux, H.D., Brown, A.M. 1984. Single channel analysis on inactivation of Ca channels. Science 225:432–434.

    Google Scholar 

  • Marrion, N.V., Zuker, R.S., Marsh, S.J., Adams, P.R. 1991. Modulation of M-current by intracellular Ca. Neuron 6:533–545

    Google Scholar 

  • Mazzanti, M., Galli, A., Ferroni, A. 1992. Effect of firing rate on the Ca permeability in adult neurons during spontaneous action potentials. Biophys J. 63:926–934

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J. 1987a. Na channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys. J. 12:95–100

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J., 1987b. Regulation of the Na conducting Ca channel during the cardiac action potential. Biophys. J. 51:115–121

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J. 1988. K channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys. J. 54:1139–1148

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J., 1990a. Ca channel gating during cardiac action potentials. Biophys. J. 58:1059–1065

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J. 1990b. Ca modulates outward current through I K1 channels. J. Membrane Biol. 116:41–45

    Google Scholar 

  • Mazzanti, M., DeFelice, L.J., Liu, Y.-M. 1991. Gating of L-type Ca channels in embryonic chick ventricle cells: dependence on voltage, current and channel density. J. Physiol. 443:307–334

    Google Scholar 

  • McDonald, T.F., Cavalie, A., Trautwein, W., Pelzer, D. 1986. Voltage-dependent properties of macroscopic and elementary Ca channel currents in guinea-pig ventricular myocytes. Pfluegers Arch. 406:437–448.

    Google Scholar 

  • Mentrard, D., Vassort, G., Fischmeister, R. 1984. Ca-mediated inactivation of the Ca conductance in Cs-loaded frog heart cells. J. Gen. Physiol. 83:105–131

    Google Scholar 

  • Messner, D.J., Catterall, W.A. 1985. The Na channel from rat brain: separation and characterization of subunits. J. Biol. Chem. 260:10597–10607

    Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridinesensitive calcium channel. Nature 340:230–233

    Google Scholar 

  • Mori Y., Friedrich, T., Kim Man-Suk, Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hoffmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., Numa, S. 1991. Primary structure and functional expression from cDNA of a brain Ca channel. Nature 350:398–402

    Google Scholar 

  • Muldoon, L.L., Enslen, H., Rodland, K.D., Magum, B.E. 1991. Stimulation of Ca influx by endothelin-1 is subject to negative feedback by elevated intracellular Ca. Am. J. Physiol. 260:C1273-C1281.

    Google Scholar 

  • Mundina, Weilenmann, D., Ma, J., Rios, E., Hosey, M.M. 1991. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase. Biophys. J. 60:902–909

    Google Scholar 

  • Nargeot, J., Dascal, N., Lester, H.A. 1992. Heterologous expression of Ca channels. J. Membrane Biol. 126:97–108

    Google Scholar 

  • Nastainczyk, W., Rohrkasten, A., Sieber, M., Rudolph C., Schäctele, C., Marme, D., Hofmann, F. 1987. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem. 169:137–142

    Google Scholar 

  • Nilius, B., Hess, P., Lansman, B., Tsien, R.W. 1985. A novel type of cardiac Ca channel in ventricular cells. Nature 316:443–446

    Google Scholar 

  • Nowycky, M.C., Fox, A., Tsien, R.W. 1985. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc. Natl. Acad. Sci. USA 82:2178–2182

    Google Scholar 

  • Nunoki, K., Floria, V., Catterall, W.A. 1989. Activation of purified calcium channels by stochiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA 86:6816–6820

    Google Scholar 

  • Ochi, R., Kawashima, Y. 1990. Modulation of slow gating process of calcium channels by isoprenaline in guinea-pig ventricular cells. J. Physiol. 424:157–204

    Google Scholar 

  • Osaka, T., Joyner, R.W. 1991. Developmental changes in Ca channels of rabbit ventricular cells. Circ. Res. 68:788–796

    Google Scholar 

  • Patlak, J.B., Ortiz, M. 1985. Slow current through single Na channels of the adult rat heart. J. Gen. Physiol. 86:89–104

    Google Scholar 

  • Patlak, J.B., Ortiz, M. 1986. Two modes of gating during late Na channel currents in frog sartorius muscle. J. Gen. Physiol. 87:305–326

    Google Scholar 

  • Perez-Reyes, E., Castellano, A., Kim, H.S., Bertrand, P., Braggstrom, E., Lacerda, A.E., Wei, X., Birnbaumer, L. 1992. Cloning and expression of a cardiac/brain β subunits of the L-type calcium channel. J. Biol. Chem. 267:1792–1797

    Google Scholar 

  • Pietrobon, D., Hess, P. 1990. Novel mechanism of voltage-dependent gating in L-type Ca channels. Nature 346:651–655

    Google Scholar 

  • Prod'hom, B., Pietrobon, D., Hess, P. 1987. Direct measurement of proton transfer rates controlling the DHP-sensitive Ca channel Nature 329:243–246

    Google Scholar 

  • Prod'hom, B., Pietrobon, D., Hess, P. 1989. Interactions of protons with single open L-type Ca channels. J. Gen. Physiol. 94:23–42

    Google Scholar 

  • Reuter, H. 1983. Ca channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Reuter, H., Stevens, C.F., Tsien, R.W., Yellen, G. 1982. Properties of single calcium channels in cardiac cell culture. Nature 297:501–504

    Google Scholar 

  • Richard, S., Tiaho, F., Charnel, P., Nargeot, J., Nerbonne, J.M. (1990). Two pathways for Ca channel gating differentially modulated by physiological stimuli. J. Gen. Physiol. H1872–H1881

  • Risso, S., DeFelice, L.J., Goolsby W.N. 1992. A mathematical model that incorporates channel density and describes the kinetics of Ca channels in nerve and heart during the action potential. Biophys J. 61:248a (Abstr.)

    Google Scholar 

  • Schwartz, L.M., McCleskey, E.W., Almers, W. 1985. Dihydropyridine receptors in muscle are V-dependent but most are not functional Ca channels. Nature 314:747–751

    Google Scholar 

  • Sham, J.S.K., Cleemann, L., Morad, M. 1992. Gating of the cardiac Ca release channel: the role of Na current and Na-Ca exchange. Science 255:850–853

    Google Scholar 

  • Shirokov, R., Levis, R., Shirokova, N., Rios, E. 1992. Two classes of gating current from L-type Ca channels in guinea pig ventrical myocytes. J. Gen. Physiol. 99:863–895

    Google Scholar 

  • Silver, R.A., Lamb, A., Bolsover, S.R. 1991. Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones. Nature 343:751–754

    Google Scholar 

  • Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., Dascal, N. 1991. The roles of the subunits in the function of the calcium channels. Science 253:1553–1556

    Google Scholar 

  • Standen N.B., Stanfield, P.R. 1982. A binding-site model of Ca channel inactivation that depends on Ca entry. Proc. R. Soc. Lond. B 217:101–110

    Google Scholar 

  • Starr, T.V.B., Prystay, W., Snutch, T.P. 1991. Primary structure of a Ca channel that is highly expressed in rat cerebellum. Proc. Natl. Acad. Sci. USA 88:5621–5625

    Google Scholar 

  • Starzak, M., Starzak, R. 1978. An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans. Biomed. Eng. MBE 25, 201–210

    Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318.

    Google Scholar 

  • Tkahashi, M., Seagar, M.J., Jones, J.F., Reber, B.F., Catterall, W.A. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA 84:5478–5482

    Google Scholar 

  • Tohse, N., Meszaros, J., Sperelakis, N. 1992. Developmental changes in long-opening behavior of L-type channels in embryonic chick heart cells. Circ. Res. 71:376–384

    Google Scholar 

  • Tohse, N., Sperelakis, N. 1991. C GMP inhibits the activity of single Ca channels in embryonic chick heart cells. Circ. Res. 69:325–331

    Google Scholar 

  • Toselli, M., Masetto, S., Rossi, P., Taglietti, V. 1991. Characterization of a voltage-dependent Ca current in human neuroblastoma cell live. SH-SYSY during differentiation. Eur. J. Neurosci. 3:514–522

    Google Scholar 

  • Trautwein, W. 1984. Beta-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pfluegers Arch. 401:111–118

    Google Scholar 

  • Trautwein, W., Pelzer, D. 1985. Voltage-dependent gating of single Ca channels in the cardiac cell membrane and its modulation by drugs. In: Calcium Physiology. D. Marmé, editor, pp. 53–93. Springer, Berlin

    Google Scholar 

  • Tsien, R.W., Bean, B.P., Hess, P., Nowycky, M.C. 1983. Ca channels: Mechanisms of β-adrenergic modulation and ion permeation. Cold Spring Harbor Symposium on Quantitative Biology XLV2. 48Pt. l:201–212

    Google Scholar 

  • Tsien, R.W., Ellinor, P.T., Horne, W.A. 1991. Molecular diversity of voltage-dependent Ca channels. Trends Pharmacol. Sci. 12, 349–354

    Google Scholar 

  • Tytgat, J., Hess, P. 1992. Evidence for cooperative interactions in K channel gating. Nature 359:420–423

    Google Scholar 

  • Tytgat, J., Nilius, B., Vereecke, J., Carmeliet, E. 1988. The T-type Ca channel in guinea-pig ventricular myocytes is insensitive to isoproterenol. Pfluegers Arch. 411:704–706

    Google Scholar 

  • Varadi, G., Lory, P., Schultz, D., Varadi, M., Schwartz, A. 1991. Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel, Nature 352:159–162

    Google Scholar 

  • Vivaudou, M.B., Singer, J.J., Walsh, J.V., Jr. 1991. Multiple types of Ca channels in visceral smooth muscle cells. Pfluegers Arch. 418:144–152

    Google Scholar 

  • Wei, X.Y., Perez-Reyes, E., Lacerda, A.E., Schuster, G., Brown, A.M., Birnbaumer, L. 1991. Heterologous regulation of the cardiac Ca channel alpha 1 subunit by skeletal muscle, beta and gamma subunits. Implications for the structure of cardiac L-type Ca channels. J. Biol. Chem. 266:21943–21947

    Google Scholar 

  • Wellis, D., DeFelice, L.J., Mazzanti, M. 1990. Outward Na current in beating heart cells. Biophys. J. 57:41–48

    Google Scholar 

  • Yue D.T., Backx, P.H., Imredy, J.P. 1991. Ca-sensitive inactivation in the gating of single Ca channels. Science 250:1735–1738

    Google Scholar 

  • Yue, D.T., Herzig, S., Marban, E. 1990. β-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc. Natl. Acad. Sci. USA 87:753–757

    Google Scholar 

  • Yue, D.T., Marban, E. 1990. Permeation in the dihydropyridinesensitive Ca channel: multi-ion occupancy but no mole fraction effect between Ba and Ca. J. Gen. Physiol. 95:911–939

    Google Scholar 

  • Zagotta, W.N., Hoshi, T., Aldrich R.W. 1990. Restoration of inactivation in mutants of Shaker K channels by a peptide derived from ShB. Science 250:568–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special thanks to Criss Hartzell, David Yue, and Rockey Bandlish for reading the manuscript and making suggestions, and to Rodolphe Fischmeister for many useful discussions. I also thank Michele Mazzanti, Yuan-mou Liu, and Stefania Risso, who worked with me and helped formulate and execute these ideas. The article arose out of a lecture to the Biomedical Engineering Society Symposium on Neural Engineering held in Charlottesville, VA, in October, 1991. This research was supported by the National Institutes of Health HL-27385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeFelice, L.J. Molecular and biophysical view of the Ca channel: A hypothesis regarding oligomeric structure, channel clustering, and macroscopic current. J. Membarin Biol. 133, 191–202 (1993). https://doi.org/10.1007/BF00232019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232019

Key Words

Navigation