Skip to main content
Log in

The role of Ca2+ in elicitation of phytoalexin synthesis in cell culture of onion (Allium cepa L.)

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Treatment of Allium cepa L. cellsuspension cultures with a biotic elicitor derived from the fungus Botrytis cinerea, resulted in phytoalexin synthesis. Two phytoalexins, 5-octylcyclopenta-1,3-dione and 5-hexyl-cyclopenta-1,3-dione, were accumulated in cultured onion cells. Removal of extracellular Ca2+ by the calcium chelator ethylene glycol bis(b-aminoethyl ether) N,N′-tetraacetic acid abolished the elicitor-mediated phytoalexin synthesis. The calcium channel blockers, verapamil and 8-N,N-(dimethylamino)octyl-3,4,5-trimethoxybenzoate caused similar effects, whereas the addition of the Ca2+ ionophore A23187 enhanced the accumulation of phytoalexins in the absence of the elicitor. Increase in the cytoplasmic Ca2+ concentration in elicitor-treated onion cells was observed as monitored by the fluorescent calcium indicator indo-1. These observations suggest that Ca2+ acts as a second messenger in the regulation of phytoalexin synthesis in cultured onion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A23187:

4-bromo-calcium ionophore

cAMP:

adenosine 3′,5′-cyclic monophosphate

[Ca2+]cyt :

cytoplasmic Ca2+ concentration

EGTA:

ethylene glycol bis(b-aminoethyl ether) N,N′-tetraacetic acid

EtOH:

ethanol

Et2O:

diethyl ether

fr.wt:

fresh weight

HR:

hypersensitive response

PIPES:

piperazine N,N′-bis-(2-ethanesulfonic acid)

TMB-8:

[8-N,N-(dimethylamino)] octyl-3,4,5-trimethoxy-benzoate

Tsl:

tsibulin

References

  • Ayres A, Ebel J, Rinelli F et al. (1976) Plant Physiol. 57: 751–759

    Google Scholar 

  • Boller T (1985) In: Key J, Kosuge T, (eds) Cellular and molecular biology of plant stress, AR Liss, New York, pp 247–262

    Google Scholar 

  • Bush D, Jones R (1990) Plant Physiol. 93: 841–845

    Google Scholar 

  • Darvill A, Albersheim P (1984) Annu. Rev. Plant Physiol. 35: 243–275

    Google Scholar 

  • Djatsok Y, Gushcha N, Dmitriev A (1994) Physiol. Biochem. Cultivat. Plants 26: 399–404

    Google Scholar 

  • Dmitriev A, Tverskoy L, Koslovsky A, Kovtun A. (1990) Mol. Plant Pathol. 37: 235–244

    Google Scholar 

  • Gaff D, Okong'O-Gola O (1971) J. Exp. Bot. 22: 756–758

    Google Scholar 

  • Gilroy S, Read N, Trewavas A (1990) Nature 346: 769–771

    Google Scholar 

  • Kao J, Harootunian A, Tsien R (1989) Biol. Chem. 264: 8179–8184

    Google Scholar 

  • Kawasaki F, Nishi A (1993) Arch. Biochem. Biophys. 302: 144–151

    Google Scholar 

  • Kendra D, Hadwiger L (1987) Physiol. Mol. Plant Pathol. 31: 337–348

    Google Scholar 

  • Kogel G, Beissmann B, Reisener H, Kogel K. (1991) Planta 183: 164–169

    Google Scholar 

  • Kojima I, Shibata H, Ogata E (1986) Bioch. Biophys. Acta 888: 25–32

    Google Scholar 

  • Lamb C, Lawton M, Dron M, Dixon R (1989) Cell 56: 215–224

    Google Scholar 

  • Mansfield J (1982) In: Bailey J, Mansfield J, (eds) Phytoalexins, Blackie, Glasgow, pp 253–288

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497

    Google Scholar 

  • Perkovskaya GY, Bader AI, Dmitriev AP (1991) Biopolim. Cell 7: 91–94

    Google Scholar 

  • Scheel D, Parker J (1990) Z. Naturforsch. 45c: 569–575

    Google Scholar 

  • Schmidt W, Ebel J (1987) Proc. Natl. Acad. Sci. USA 84, 4117–4121

    Google Scholar 

  • Schroeder J, Hagiwara W (1990) Proc. Natl. Acad. Sci. USA 87, 9305–9309

    Google Scholar 

  • Smith C (1991) In: Smith C, (ed) Biochemistry and molecular biology of plant-pathogen interactions, Clarendon Press, Oxford, pp 255–270

    Google Scholar 

  • Stab M, Ebel J (1987) Arch. Biochem. Biophys. 257: 416–423

    Google Scholar 

  • Timmers A, Reiss H, Schell J (1991) Cell Calcium 12, 515–521

    Google Scholar 

  • Zima V, Djatsok O, Gantsyrin V (1994) Fiziologitsnii Zyrnal 40: 112–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Barz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, A., Djatsok, J. & Grodzinsky, D. The role of Ca2+ in elicitation of phytoalexin synthesis in cell culture of onion (Allium cepa L.). Plant Cell Reports 15, 945–948 (1996). https://doi.org/10.1007/BF00231593

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231593

Key words

Navigation