Skip to main content
Log in

Liver phosphorylase phosphatase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Recent progress in studies on the properties and regulation of liver phosphorylase phosphatase can be divided into four stages. First, isolation from multiple molecular forms of phosphorylase phosphatase, of a single form of catalytic subunit (Mr = 32 000-35 000) which is active toward phosphorylase a and also toward a variety of protein substrates phosphorylated by either cyclic AMP-dependent protein kinase or other protein kinases. This was achieved by rather drastic procedures such as treatment with 80% ethanol at room temperature, incubation with 6 M urea, freeze-thawing in the presence of 0.2 M mercaptoethanol, or digestion by trypsin. These treatments caused concomitantly large enhancement of phosphorylase phosphatase activity, and the hypothesis was proposed that an ‘inactive’ form of phosphorylase phosphatase existed as complexes of a catalytic subunit and inhibitory proteins. Second, it was discovered that liver and muscle extracts contain trypsin-labile proteins which, after heating at 90 °C, inhibited the catalytic subunit of phosphorylase phosphatase. Two types of protein inhibitors were identified: ‘inhibitor-I’ was phosphorylated and activated by cyclic AMP-dependent protein kinase, whereas ‘inhibitor-2’ was not phosphorylated. Although inhibitor-1 has been implicated in hormonal regulation of glycogen metabolism in skeletal muscle, a similar role of protein inhibitors in the regulation of phosphorylase phosphatase in the liver has not been demonstrated and the physiological role of the inhibitor is questionable.

Third, it has been demonstrated that liver phosphorylase phosphatase is reversibly inactivated and regulated by glutathione disulfide (GSSG) at the catalytic subunit level. Liver phosphorylase phosphatase contains, per mole of catalytic subunit, two sulfhydryl groups, one of which reacts with GSSG to form mixed disulfide with consequent inactivation of the enzyme. The inactivated enzyme can be reactivated by glutathione(GSH) or other sulfhydryl compounds through a reverse reaction. Injection of GSSG into the portal vein of rabbits caused a rapid increase in phosphorylase-a activity in the liver, suggesting that GSSG is involved in regulation of phosphorylase activity in vivo.

Finally, current evidence suggests that liver phosphorylase phosphatase exists in the native state in a high molecular weight form which consists of the catalytic subunit and other regulatory subunits. One such enzyme species could be a 260 000-dalton protein composed of three different types of subunit, termed α, β and γ, or a 160 000-dalton protein composed of α and β subunits. The a subunit (Mr = 35 000) appears to be identical to the multifunctional catalytic subunit, whereas the β (Mr = 69 000) and γ (Mr = 58 000) subunits are catalytically inactive but can modify the catalytic a subunit. It seems likely that the substrate specificity and catalytic activity of the α subunit is considerably altered when it is part of larger complexes with other regulatory subunits (β and γ). It has also been suggested that in addition to the native form of phosphorylase phosphatase, liver contains a considerably large amount of latent phosphorylase phosphatase, the catalytic activity of which could be revealed only by treatment with trypsin or ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, D. P., Fischer, E. H. and Krebs, E. G., 1970. Biochemistry 9: 1923–1929.

    Google Scholar 

  2. Cori, G. T. and Green, A. A., 1943. J. Biol. Chem. 151: 31–38.

    Google Scholar 

  3. Wosilait, W. D. and Sutherland, E. W., 1956. J. Biol. Chem. 218: 469–481.

    Google Scholar 

  4. Shimazu, T. and Amakawa, A., 1975. Biochim. Biophys. Acta 385: 242–256.

    Google Scholar 

  5. Krebs, E. G. and Beavo, J. A., 1979. Ann. Rev. Biochem. 48: 923–959.

    Google Scholar 

  6. Chock, P. B., Rhee, S. G. and Stadtman, E. R., 1980. Ann. Rev. Biochem. 49: 813–843.

    Google Scholar 

  7. Brandt, H., Killilea, S. D. and Lee, E. Y. C., 1974. Biochem. Biophys. Res. Commun. 61: 548–554.

    Google Scholar 

  8. Kobayashi, M., Kato, K. and Sato, S., 1975. Biochim. Biophys. Acta 377: 343–355.

    Google Scholar 

  9. Kalala, L. R., Goris, J. and Merlevede, W., 1973. FEBS Lett. 32: 284–288.

    Google Scholar 

  10. Lee, E. Y. C., Brandt, H., Capulong, Z. L. and Killilea, S. D., 1976. Adv. Enzyme Regul. 14: 467–490.

    Google Scholar 

  11. Killilea, S. D., Mellgren, R. L., Aylward, J. H., Metieh, M. E. and Lee, E. Y. C., 1979. Arch. Biochem. Biophys. 193: 130–139.

    Google Scholar 

  12. Hurd, S. S., Novoa, W. B., Hickenbottom, J. P. and Fischer, E. H., 1966. Methods in Enzymology 8: 546–550.

    Google Scholar 

  13. Kato, K., Kobayashi, M. and Sato, S., 1974. Biochim. Biophys. Acta 371: 89–101.

    Google Scholar 

  14. Goris, J. and Merlevede, W., 1972. Arch. Internat. Physiol. Biochem. 80: 967–969.

    Google Scholar 

  15. Kobayashi, M. and Kato, K., 1977. J. Biochem. (Tokyo) 81: 93–97.

    Google Scholar 

  16. Lee, E. Y. C., Mellgren, R. L., Killilea, S. D. and Aylward, J. H., 1978. In: Regulatory Mechanisms of Carbohydrate Metabolism (Esmann, V., ed.), FEBS Symposium, Vol. 42, pp. 327–346, Pergamon Press, New York.

    Google Scholar 

  17. Brandt, H., Lee, E. Y. C. and Killilea, S. D., 1975. Biochem. Biophys. Res. Commun. 63: 950–956.

    Google Scholar 

  18. Jett, M.-F. and Hers, H.-G., 1981. Eur. J. Biochem. 118: 283–288.

    Google Scholar 

  19. Brandt, H., Capulong, Z. L. and Lee, E. Y. C., 1975. J. Biol. Chem. 250: 8038–8044.

    Google Scholar 

  20. Killilea, S. D., Brandt, H., Lee, E. Y. C. and Whelan, W. J., 1976. J. Biol. Chem. 251: 2363–2368.

    Google Scholar 

  21. Khandelwal, R. L., Vandenheede, J. R. and Krebs, E. G., 1976. J. Biol. Chem. 251: 4850–4858.

    Google Scholar 

  22. Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. and Cohen, P., 1977. Biochem. J., 162: 423–433.

    Google Scholar 

  23. Li, H.-C., Hsiao, K.-J. and Chan, W. W. S., 1978. Eur. J. Biochem. 84: 215–225.

    Google Scholar 

  24. Chou, C.-K., Alfano, J. and Rosen, O. M., 1977. J. Biol. Chem. 252: 2855–2859.

    Google Scholar 

  25. Nakai, C. and Thomas, J. A., 1974. J. Biol. Chem. 249: 6459–6467.

    Google Scholar 

  26. Huang, F. L. and Glinsmann, W. H., 1975. Proc. Nat. Acad. Sci. USA 72: 3004–3008.

    Google Scholar 

  27. Huang, F. L. and Glinsmann, W. H., 1976. FEBS Lett. 62: 326–329.

    Google Scholar 

  28. Huang, F. L. and Glinsmann, W. H., 1976. Eur. J. Biochem. 70: 419–426.

    Google Scholar 

  29. Huang, F. L., Tao, S. and Glinsmann, W. H., 1977. Biochem. Biophys. Res. Commun. 78: 615–623.

    Google Scholar 

  30. Goris, J., Defreyn,G., Vandenheede, J. R. and Merlevede, W., 1978. Eur. J. Biochem. 91: 457–464.

    Google Scholar 

  31. Khandelwal, R. L. and Zinman, S. M., 1978. J. Biol. Chem. 253: 560–565.

    Google Scholar 

  32. Cohen, P., Nimmo, G. A. and Antoniw, J. F., 1977. Biochem. J. 162: 435–444.

    Google Scholar 

  33. Nimmo, G. A. and Cohen, P., 1978. Eur. J. Biochem. 87: 341–351.

    Google Scholar 

  34. Nimmo, G. A. and Cohen, P., 1978. Eur. J. Biochem. 87: 353–365.

    Google Scholar 

  35. Cohen, P., 1978. In: Current Topics in Cellular Regulation (Horecker, B. L. and Stadtman, E. R., Eds.), Vol. 14, pp. 117–196, Academic Press, New York.

  36. Cohen, P., Rylatt, D. B. and Nimmo, G. A., 1977. FEBS Lett. 76: 182–186.

    Google Scholar 

  37. Foulkes, J. G. and Cohen, P., 1979. Eur. J. Biochem. 97: 251–256.

    Google Scholar 

  38. Tao, S., Huang, F. L., Lynch, A. and Glinsmann, W. H., 1978. Biochem. J., 176: 347–350.

    Google Scholar 

  39. Khatra, B. S., Chiasson, J.-L., Shikama, H., Exton, J. H. and Soderling, T. R., 1980. FEBS Lett. 114: 253–256.

    Google Scholar 

  40. Foulkes, J. G., Jefferson, L. S. and Cohen, P., 1980. FEBS Lett. 112: 21–24.

    Google Scholar 

  41. Defieyn, G., Goris, J. and Merlevede, W., 1977. FEBS Lett. 79: 125–128.

    Google Scholar 

  42. Khandelwal, R. L. and Zinman, S. M., 1978. Biochem. Biophys. Res. Commun. 82: 1340–1345.

    Google Scholar 

  43. Knight, B. L. and Teal, T. K., 1980. Eur. J. Biochem. 104: 521–528.

    Google Scholar 

  44. Shimazu, T., Tokutake, S. and Usami, M., 1978. J. Biol. Chem. 253: 7376–7382.

    Google Scholar 

  45. Usami, M., Matsushita, H. and Shimazu, T., 1980. J. Biol. Chem. 255: 1928–1931.

    Google Scholar 

  46. Mannervik, B. and Axelsson, K., 1980. Biochem. J. 190: 125–130.

    Google Scholar 

  47. Axelsson, K., Eriksson, S. and Mannervik, B., 1978. Biochemistry 17: 2978–2984.

    Google Scholar 

  48. Sies, H., Gerstenecker, C., Summer, K. H., Menzel, H. and Flohé, L., 1974. In: Glutathione, Proceedings of the 16th Conference of the German Society of Biological Chemistry (Flohé, L., Benöhr, H. Ch., Sies, H., Waller, H. D. and Wendel, A., eds.), pp. 261–276, Georg Thieme, Stuttgart.

  49. Kikuchi, K., Tamura, S., Hiraga, A. and Tsuiki, S., 1977. Biochem. Biophys. Res. Commun. 75: 29–37.

    Google Scholar 

  50. Tan, A. W. H. and Nuttall, F. Q., 1978. Biochim. Biophys. Acta 552: 139–150.

    Google Scholar 

  51. Laloux, M., Stalmans, W. and Hers, H.-G., 1978. Eur. J. Biochem. 92: 15–24.

    Google Scholar 

  52. Tan, A. W. H. and Nuttall, F. Q., 1976. Biochim. Biophys. Acta 445: 118–130.

    Google Scholar 

  53. Gold, A. H., Dickemper, D. and Haverstick, D. M., 1979. Mol. Cell. Biochem. 25: 47–59.

    Google Scholar 

  54. Miller, T. B., Jr., Garnache, A. and Vicalvi, J. J., Jr., 1981. J. Biol. Chem. 256: 2851–2855.

    Google Scholar 

  55. Tamura, S., Kikuchi, K., Hiraga, A., Kikuchi, H., Hosokawa, M. and Tsuiki, S., 1978. Biochim. Biophys. Acta 524: 349–356.

    Google Scholar 

  56. Hiraga, A., Kikuchi, K., Tamura, S. and Tsuiki, S., 1981. Eur. J. Biochem. 119: 503–510.

    Google Scholar 

  57. Tamura, S. and Tsuiki, S., 1980. Eur. J. Biochem. 111: 217–224.

    Google Scholar 

  58. Tamura, S., Kikuchi, H., Kikuchi, K., Hiraga, A. and Tsuiki, S., 1980. Eur. J. Biochem. 104: 347–355.

    Google Scholar 

  59. Mellgren, R. L., Aylward, J. H., Killilea, S. D. and Lee, E. Y. C., 1979. J. Biol. Chem. 254: 648–652.

    Google Scholar 

  60. Merlevede, W., Goris, J. and DeBrandt, C., 1969. Eur. J. Biochem. 11: 499–502.

    Google Scholar 

  61. Goris, J., Defreyn, G. and Merlevede, W., 1979. FEBS Lett. 99: 279–282.

    Google Scholar 

  62. Goris, J., Dopere, F., Vandenheede, J. R. and Merlevede, W., 1980. FEBS Lett. 117: 117–121.

    Google Scholar 

  63. Imaoka, T., Imazu, M., Usui, H., Kinohara, N. and Takeda, M., 1980. Biochim. Biophys. Acta 612: 73–84.

    Google Scholar 

  64. Imazu, M., Imaoka, T., Usui, H., Kinohara, N. and Takeda, M., 1981. J. Biochem. (Tokyo) 90: 851–862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimazu, T. Liver phosphorylase phosphatase. Mol Cell Biochem 49, 3–15 (1982). https://doi.org/10.1007/BF00230991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230991

Keywords

Navigation