Skip to main content
Log in

The interleukin-6 gene locus seems to be a preferred target site for retrotransposon integration

  • Original Articles
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Recently, we have observed the insertion of a retrotransposon into the interleukin-6 (II-6) locus of a mouse somatic cell line. Here we report the characterization of Il-6 genomic regions from both mouse and rat. Restriction site analysis, DNA sequence analysis, and computer-assisted search revealed eight retrotransposon-like elements distributed over a 25 kilobase (kB) mouse Il-6 region. In the rat, five different retrotransposons have been identified within a 17 kb Il-6 region. The retrotransposons belong to the LINE-, Alu I or Alu II families, or to a rat specific class of retrotransposons. Some of the retrotransposons class of retrotransposons. Some of the retrotransposons exhibit characteristic features such as target site duplication and a poly A-tract. Remarkably, several retrotransposons map to different chromosomal locations in the mouse and rat. A genealogical tree of mouse, rat, and human Il-6 loci demonstrates a series of retrotranspositions that recently occurred in evolution. These results suggest that the Il-6 locus serves as a preferred target site for retrotransposon integration during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, K. L., and Hastie, N. D.: Looking for eelationships between the most repeated dispersed DNA sequence in the mouse: small R elements are found associated consistently with long M repeats. EMBO J 3: 467–472, 1984

    Google Scholar 

  • Blankenstein, T., Qin, Z., Li, W.. and Diamantstein, T.: DNA rearrangement and constitutive expression of the interleukin 6 gene in a mouse plasmacytoma, J Exp Med 171: 965–970, 1990

    Google Scholar 

  • Fanning, T. and Singer, M.: The LINE-1 DNA sequence in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res 14: 2251–2260, 1987

    Google Scholar 

  • Hattori, M., Kuhara, S., Takenaka, O., and Sasaki, Y.: L1 family of repetitive DNA sequence in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321: 625–628, 1986

    Google Scholar 

  • Henthron, P. S., Mager, D. L., Huisman, T. H. J., and Smithies, O.: A gene deletion ending within a complex array of repeated sequences 3′ to the human β-globin gene cluster. Proc Natl Acad Sci USA 83: 5194–5198, 1986

    Google Scholar 

  • Kagadeeswaran, P., Tuan, D., Forget, B. G., and Weissman, S. M.: A gene deletion ending at the midpoint of a repetitive DNA sequence in one form of hereditary persistence of fetal haemoglobolin. Nature 296: 469–470, 1982

    Google Scholar 

  • Kazazian, H. H., Wong, C., Youssoufian, H., Scott, A. F., Phillips, D. G., and Antonarakis, S. E.: Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166, 1988

    Google Scholar 

  • Kikuchi, H., Sekiya, T., Nishimura, S., and Watanabe, M.: Rat repetitive sequence: consensus sequence of Taq I-298 base pairs fragment. Nucleic Acids Res 15: 8107–8108, 1987

    Google Scholar 

  • Korenberg, J. R. and Rykowski, M. C.: Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400, 1988

    Article  CAS  PubMed  Google Scholar 

  • Lehrman, M. A., Schneider, W. J., Südhof, T. C., Brown, M. S., Goldstein, J. L. and Russell, D. W.: Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 227: 140–146, 1985

    Google Scholar 

  • Loeb, D. D., Padgett, R. W., Hardies, S. C., Shehee, W. E., Comer, M. B., Edgell, M. H., and Hutchison, C. A.: The sequence of a large L1MD element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 1: 168–182, 1986

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J.: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982

    Google Scholar 

  • Northemann, W., Braciak, T. A., Hattori, M., Lee, F., and Fey, G. H.: Structure of the rat interleukin 6 gene and its expression in macrophage-derived cells. J Biol Chem 264: 16072–16082, 1989

    Google Scholar 

  • Qin, Z., Richter, G., Diamantstein, T., and Blankenstein, T.: Structure and evolution of mouse interleukin 6 gene. Mol Immunol 26: 1021–1026, 1989

    Google Scholar 

  • Richter, G., Blankenstein, T., and Diamantstein, T.: Evolutionary aspects, structure and expression of the rat interleukin 4 gene. Cytokine 2: 221–228, 1990

    Google Scholar 

  • Rogers, J. H.: The origin and evolution of retroposons. Int Rev Cytol 93: 187–279, 1985

    Google Scholar 

  • Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Rose, B. A.: Cloning in single-stranded bateriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178, 1980

    Google Scholar 

  • Singer, M. F.: SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434, 1982

    Google Scholar 

  • Singer, M. F. and Skowronski, J.: Making sense oout of LINEs: long interpersed repeat sequences in mammalian genomes. Trends Biochem Sci 3: 119–122, 1985

    Google Scholar 

  • Skowronski, J. and Singer, M. F.: Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc Natl Acad Sci USA 82: 6050–6054, 1985

    Google Scholar 

  • Tanabe, O., Akika, S., Kamiya, T., Wong, G. G., Hirano, T., and Kishimoto, T.: Genomic structure of the murine IL-6 gene. J Immunol 141: 3875–3881, 1988

    Google Scholar 

  • Überla, K., Li, W., Qin, Z., Richter, T., Diamantstein, T., and Blankenstein, T: The rat interleukin 5 gene: characterization and expression by a combination of retroviral gene transfer and polymerase chain reaction. Cytokine 3: 1, 1991

    Google Scholar 

  • Van Snick, J., Cayphas, S., Szikora, J.-P., Van Roost, E., Boon, T., and Simpson, R. J.: cDNA of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol, 18: 193–197, 1988

    Google Scholar 

  • Weiner, A. M., Deininger, P. L., and Efstratiadis, A.: Nonviral retrotransposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Ann Rev Biochem 55: 631–661, 1986

    Google Scholar 

  • Yasukawa, K., Hirano, T., Watanabe, Y., Muratani, K., Matsuda, T., Nakai, S., and Kishimoto, T.: Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene. EMBO J 6: 2939–2945, 1987

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M36993-4 (L.1.R3), M36995 (L1.R2), and M36996 (L1.M1/L1.M2).

This work contains part of the doctoral thesis of Z. Qin and I. Schuller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Schuller, I., Richter, G. et al. The interleukin-6 gene locus seems to be a preferred target site for retrotransposon integration. Immunogenetics 33, 260–266 (1991). https://doi.org/10.1007/BF00230504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230504

Keywords

Navigation