Skip to main content
Log in

Genetic analysis using trans-dominant linked markers in an F2 family

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Trans-dominant linked markers pairs (trans referring to the repulsion linkage phase) provide a model for inferring the F2 progeny genotype based upon both the conditional probabilities of F2 genotypes, given the F2 phenotype, and prior information on marker arrangement. Prior information of marker arrangement can be readily obtained from a linkage analysis performed on marker segregation data in a family resulting by crossing the F1 individual to a “tester” parent or else can be obtained directly from the gametes of the F1, or from recombinant inbred lines. We showed that a trans-dominant linked marker (TDLM) pair can be recoded as a “co-dominant megalocus” when the recombination fraction, r1, for apair of TDLMs is less than 0.05. We obtained a maximum-likelihood estimator (MLE) of the recombination frequency, r2, between a TDLM pair and a co-dominant marker in an F2 family using the EM algorithm. The MLE was biased. Mean bias increased as r1 and r2 increased, and decreased as sample size increased. The information content for r2 was compared to the information content of dominant and co-dominant markers segregating in an F2 family. It was almost identical with two co-dominant markers when r1≤0.01 and r2≥0.05. For larger values of r1, (0.05≤r1≤0.15) a TDLM pair provided 75%–66% of the information content of two co-dominant markers. Although dominant markers can be converted to co-dominant markers by a laborious process of cloning, sequencing, and PCR, TDLM pairs could easily substitute for co-dominant markers in order to detect quantitative trait loci (QTLs) and estimate gene action in an F2 family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260

    Google Scholar 

  • Allard R (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) A high-resolution DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557

    Google Scholar 

  • Chang C, Bowman AW, Lander ES, Meyerowitz EW (1988) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Proc Natl Acad Sci USA 85:9856–6860

    Google Scholar 

  • Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943- 951

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Series B 39:1–39

    Google Scholar 

  • Eck HJ van, van der Voort JR, Draaistra J, van Zandvoort P, van Enckevort E, Segers B, Peleman J, Jacobsen E, Helder J, Bakkler J (1995) The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breed 1:397–410

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilited investigations of quantitative trait loci in maize. I Numbers, genomic distribution and type of gene action. Genetics 116:113–125

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Knapp SJ, Holloway JL, Bridges WC, Liu BH (1995) Mapping dominant markers using F2 matings. Theor Appl Genet 91:74–81

    Google Scholar 

  • Nam HG, Giraudat J, den Boer B, Moonan F, Loos WDB, Hauge BM, Goodman HM (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1:699–705

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991a) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127:181–197

    Google Scholar 

  • Paterson AH, Tanksley SD, Sorrells ME (1991b) DNA markers in plant improvement. Adv Agron 46:39–90

    CAS  Google Scholar 

  • Plomion C, Bahrman N, Durel C-E, O'Malley DM (1995) Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers. Heredity 74:661–668

    Google Scholar 

  • Reiter RS, Williams J, Feldman K, Rafalski JA, Tingey SV, Scolnik PA (1992) Global and local genome mapping in Arabidopsis thaliana recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89:1477–1481

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular markerbased linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol 218:704–740

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. E. Hart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plomion, C., Liu, B.H. & O'Malley, D.M. Genetic analysis using trans-dominant linked markers in an F2 family. Theoret. Appl. Genetics 93, 1083–1089 (1996). https://doi.org/10.1007/BF00230129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230129

Key words

Navigation