Skip to main content
Log in

Human amblyopia: structure of the visual field

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Kittens raised with different kinds of abnormal early visual experience (monocular and binocular deprivation, convergent strabismus, eye rotation, asymmetric alternating occlusion, early callosal split) show systematic deficits in the nasal visual field of the affected eye. To test whether abnormal visual experience produces similar deficits in the human visual system, we measured the monocular visual field of humans with subnormal binocular vision (strabismic and anisometropic amblyopes, strabismics with alternating fixation). Eight amblyopes were tested with a computer-assisted static perimetry (Octopus 2000). Twenty other subjects were tested with kinetic perimetry (Goldmann 940), 11 subjects with static perimetry (Goldmann 940). In some of these subjects, we measured the latency of saccades and the accuracy of visually guided pointing toward stimuli presented in the peripheral visual field. Both strabismic and anisometropic amblyopes frequently showed deficits of visual sensitivity in the central part of the visual field, but no systematic deficits in the peripheral field of the amblyopic eyes. Strabismic alternators had practically equal fields in the two eyes. Neither saccadic latency nor pointing accuracy showed a systematic impairment in the nasal visual field. The discrepancy between the field losses in strabismic humans and in cats raised with a surgically induced squint cannot be due to methodological differences, but rather to anatomical differences, or to the different origin of strabismus in the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus K, Wolf W (1984) Early postnatal development of neuronal function in the kitten's visual cortex: a laminar analysis. J Physiol (Lond) 348:153–185

    Google Scholar 

  • Aulhorn E (1967) Die gegenseitige Beeinflussung abbildungsgleicher Netzhautstellen bei normalem und gestörtem Binocularsehen. Doc Ophthalmol 23:27–61

    Google Scholar 

  • Bedell HE (1982) Symmetry of acuity profiles in esotropic amblyopic eyes. Hum Neurobiol 1:221–224

    Google Scholar 

  • Bisti S, Carmignoto G (1986) Monocular deprivation in kittens differentially affects crossed and uncrossed visual pathways. Vision Res 26:875–884

    Google Scholar 

  • Bowering E, Maurer D, Lewis TL, Brent P, Brent HP (1989) Development of the visual field in normal and binocularly deprived children. Invest Ophthalmol Vis Sci [Suppl] 30:377

    Google Scholar 

  • Chelazzi L, Marzi CA, Panozzo G, Pasqualini N, Tassinari G, Tomazzoli L (1988) Hemiretinal differences in speed of light detection in esotropic amblyopes. Vision Res 28:95–104

    Google Scholar 

  • Cynader M, Gardner JC, Mustari M (1984) Effects of neonatally induced strabismus on binocular responses in cat area 18. Exp Brain Res 53:384–399

    Google Scholar 

  • Duke-Elder S, Wybar K (1973) System of ophthalmology: ocular motility and strabismus. Kimpton, London

    Google Scholar 

  • Elberger AJ (1979) The role of the corpus callosum in the development of interocular eye alignment and the organization of the visual field in the cat. Exp Brain Res 36:71–85

    Google Scholar 

  • Elberger AJ, Smith III EL, White JM (1983) Optically induced strabismus results in visual field losses in cats. Brain Res 268:147–152

    Google Scholar 

  • Fronius M, Sireteanu R (1987) Pointing errors in strabismic amblyopes. In: Kaufmann H (ed) Trans. 16th Meeting European Strabismological Association, Giessen, pp 243–249

  • Gordon B, Moran J, Presson J (1979) Visual fields of cats reared with one eye rotated. Brain Res 174:167–171

    Google Scholar 

  • Haase W (1988) Amblyopia: clinical aspects. In: Lennerstrand G, Noorden GK von, Campos EC (eds) Strabismus and amblyopia: experimental basis for advances in clinical management. MacMillan Press, Houndsmills London

    Google Scholar 

  • Hess RF, Pointer JS (1985) Differences in the neural basis of human amblyopia: the distribution of the anomaly across the visual field. Vision Res 25:1577–1594

    Google Scholar 

  • Hoffmann K-P, Schoppmann A (1984) Shortage of binocular cells in area 17 of visual cortex in cats with congenital strabismus. Exp Brain Res 55:470–482

    Google Scholar 

  • Hoffmann K-P, Sherman SM (1974) Effects of early monocular deprivation on visual input of cat superior colliculus. J Neurophysiol 37:1276–1286

    Google Scholar 

  • Hoffmann K-P, Sherman SM (1975) Effects of early binocular deprivation on visual input to cat superior colliculus. J Neurophysiol 38:1049–1059

    Google Scholar 

  • Hoffmann K-P, Sireteanu R (1977) Interlaminar differences in the effects of early and late monocular deprivation on the visual acuity of cells in the lateral geniculate nucleus of the cat. Neurosci Lett 5:171–175

    Google Scholar 

  • Horner D, Bedell H, Levi D (1985) The basis for increased saccadic latency in strabismic amblyopic eyes. Invest Ophthalmol Vis Sci [Suppl] 26:255

    Google Scholar 

  • Ikeda H, Jacobson SG (1977) Nasal field loss in cats reared with convergent squint: behavioural studies. J Physiol (Lond) 270:367–381

    Google Scholar 

  • Ikeda H, Plant GT, Tremain KE (1977) Nasal field loss in kittens reared with convergent squint: neurophysiological and morphological studies of the lateral geniculate nucleus. J Physiol (Lond) 270:345–366

    Google Scholar 

  • Jacobson SG, Sandberg MA (1980) Nasal-temporal asymmetry of visual thresholds from known retinal areas in strabismic amblyopia. Invest Ophthalmol Vis Sci [Suppl] 21:271

    Google Scholar 

  • Joosse MV, Wilson JR, Boothe RG (1988) Monocular visual fields of macaque monkeys with naturally occurring strabismus. Invest Ophthalmol Vis Sci [Suppl] 29:345

    Google Scholar 

  • Kalil RE (1977) Visual field defects in strabismic cats. Invest Ophthalmol Vis Sci [Suppl] 16:163

    Google Scholar 

  • Lewis TL, Maurer D, Brent HP (1986) Effects on perceptual development of visual deprivation during infancy. Br J Ophthalmol 70:214–220

    Google Scholar 

  • Mackensen G (1959) Monoculare und binoculare statische Perimetrie zur Untersuchung der Hemmungsvorgänge beim Schielen. Graefes Arch Clin Exp Ophthalmol 160:573–587

    Google Scholar 

  • Maurer D, Clarke AL, Lewis TL (1986) The development of peripheral detection during infancy. Invest Ophthalmol Vis Sci [Suppl] 27:264

    Google Scholar 

  • Mehdorn E (1986) Nasal field defects in strabismic amblyopia. Doc Ophthalmol Proc Ser 45:318–329

    Google Scholar 

  • Mioche L, Perenin MT (1986) Central and peripheral residual vision in humans with bilateral deprivation amblyopia. Exp Brain Res 62:259–272

    Google Scholar 

  • Mohn G, van Hof-van Duin J (1986) Development of the binocular and monocular visual fields of human infants during the first year of life. Clin Vis Sci 1: 51–64

    Google Scholar 

  • Mohn G, Sireteanu R, van Hof-van Duin J (1986) The relation of monocular optokinetic nystagmus to peripheral binocular interactions. Invest Ophthalmol Vis Sci 27:565–573

    Google Scholar 

  • Moran J, Gordon B (1982) Long term visual deprivation in a human. Vision Res 22:27–36

    Google Scholar 

  • Norton TT, Lindsley W (1971) Visual behaviour after bilateral superior colliculus lesions in kittens and cats. Fed Proc Fed Am Soc Exp Biol 30:615

    Google Scholar 

  • Peck CK, Barber G, Pilsecker CE, Wark RC (1980) Visual field deficits in cats reared with cyclodeviations of eyes. Exp Brain Res 41:61–74

    Google Scholar 

  • Pugh M (1958) Visual distortion in amblyopia. Br J Ophthalmol 42:449–460

    Google Scholar 

  • Rakič P (1977) Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond [Biol] 278:245–260

    Google Scholar 

  • Shatz CJ (1983) The prenatal development of the cat's retinogeniculate pathway. J Neurosci 3:482–499

    Google Scholar 

  • Sherman SM (1973) Visual field defects in monocularly and binocularly deprived cats. Brain Res 49:25–45

    Google Scholar 

  • Sherman SM (1974) Visual fields of cats with cortical and tectal lesions. Science 185:355–357

    Google Scholar 

  • Singer W (1978) The effect of monocular deprivation on cat parastriate cortex: asymmetry between crossed and uncrossed projection. Brain Res 157:351–355

    Google Scholar 

  • Sireteanu R (1982) Human amblyopia: consequence of chronic interocular suppression. Hum Neurobiol 1:31–33

    Google Scholar 

  • Sireteanu R, Fronius M (1981) Naso-temporal asymmetries in human amblyopia: consequence of long-term interocular suppression. Vision Res 21:1055–1063

    Google Scholar 

  • Sireteanu R, Fronius M (1986) Human amblyopia: structure of the visual field. Invest Ophthalmol Vis Sci [Suppl] 27:153

    Google Scholar 

  • Sireteanu R, Maurer D (1982) The development of the kitten's visual field. Vision Res 22:1105–1111

    Google Scholar 

  • Sireteanu R, Singer W (1984) Impaired visual responsiveness in both eyes of kittens with unilateral surgically induced strabismus. Invest Ophthalmol Vis Sci [Suppl] 25:216

    Google Scholar 

  • Sireteanu R, Best J, Greuel J (1988) Squint-induced modification of visual receptive-field properties in single cells of the lateral suprasylvian area of the cat. Eur J Neurosci [Suppl]: 270

  • Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780

    Google Scholar 

  • Sprague JM, Meikle Jr TH (1965) The role of the superior colliculus in visually guided behaviour. Exp Neurol 11:115–146

    Google Scholar 

  • Stein BE, Gallagher HL (1981) Maturation of cortical control over superior colliculus cells in cat. Brain Res 223:429–435

    Google Scholar 

  • Tumosa N, Tiemann SB, Hirsch HVB (1980) Unequal alternating monocular deprivation causes asymmetric visual fields in cats. Science 208:421–423

    Google Scholar 

  • Van Hof-van Duin J (1977) Visual field measurements in monocularly deprived and normal cats. Exp Brain Res 30:353–368

    Google Scholar 

  • von Grünau MW, Rauschecker JP (1983) Natural strabismus in non-siamese cats: lack of binocularity in the striate cortex. Exp Brain Res 52:307–310

    Google Scholar 

  • von Noorden GK (1988) Current concepts of infantile esotropia. Eye 2:343–357

    Google Scholar 

  • Wickelgren-Gordon B (1972) Some effects of visual deprivation on the cat superior colliculus. Invest Ophthalmol 11:460–466

    Google Scholar 

  • Zabločka T, van Hof-van Duin J (1980) Perimetry in binocularly light deprived cats. Neurosci Lett [Suppl] 5:138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sireteanu, R., Fronius, M. Human amblyopia: structure of the visual field. Exp Brain Res 79, 603–614 (1990). https://doi.org/10.1007/BF00229328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229328

Key words

Navigation