Skip to main content
Log in

Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere

II: Within an urban canyon

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Results from measurements of long-wave radiative flux divergence on calm, cloudless nights from within an urban canyon are presented. Results show the existence of three-dimensional (volume) radiative divergence in the canyon-air system. The results are compared with air temperature cooling rates (energy storage change) in the canyon. With calm, cloudless conditions, radiative divergence is the dominant mechanism controlling air temperature changes. In the early part of the night this results in air cooling, but radiative warming was commonly observed after midnight. Canyon-air volume radiative divergence is found to be considerably less than that observed previously above roof-level, and in rural areas. Measured cooling rates in the canyon are poorly predicted by a surface-oriented cooling approach. This again points to the importance of the atmospheric radiation balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooks, D. L.: 1950, A tabular method for the computation of temperature change by infrared radiation in the free atmosphere, J. Meteorol. 7, 313–321.

    Google Scholar 

  • Brunt, D.: 1941, Physical and Dynamical Meteorology, Cambridge Univ. Press, London, 428 pp.

    Google Scholar 

  • Corradini, C. and Severini, M.: 1975, Laboratory experimental check of radiative air cooling theory, Quart. J. Roy. Meteorol. Soc. 101, 163–167.

    Google Scholar 

  • Elsasser, W. M. and Culbertson, M. T.: 1961, Atmospheric radiation tables, Meteorol. Monog. 4, No. 23, Amer. Meteorol. Soc., Boston.

    Google Scholar 

  • Fleagle, R. G.: 1953, A theory of fog formation, J. Marine Res., 12, 43–50.

    Google Scholar 

  • Fuggle, R. F. and Oke, T. R.: 1976, ‘Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere. I: Above roof-level’, this issue, p. 113.

  • Funk, J. P.: 1960,Measured radiative flux divergence near the ground, Quart. J. Roy. Meteorol. Soc. 86, 382–389.

    Google Scholar 

  • Gaevskaya, G. N., Kondratyev, K. Ya., and Yakushevskaya, K. Ye.: 1963, Radiative heat flux divergence and heat regime in the lowest layers of the atmosphere, Archiv Meteorol. Geophys. Bioklima., Ser. B, 12, 95–108.

    Google Scholar 

  • Hage, K. D.: 1972, Nocturnal temperatures in Edmonton, Alberta, J. Appl. Meteorol., 11, 123–129.

    Google Scholar 

  • Hage, K. D.: 1975, Urban-rural humidity differences, J. Appl. Meteorol. 14, 1277–1283.

    Google Scholar 

  • I.H.V.E.: 1965, I.H.V.E. Guide to Current Practice, Instil. Heat, and Ventil. Engin., London.

    Google Scholar 

  • Kondo, T.: 1971, Effect of radiative heat transfer on profiles of wind, temperature and water vapour in the atmospheric boundary layer, J. Meteorol. Soc. Japan, 49, 75–94.

    Google Scholar 

  • Kondratyev, K. Ya.: 1965, Radiative Heat Exchange in the Atmosphere, 1st Engl. Ed., Pergamon, New York, 411 pp.

    Google Scholar 

  • Kondratyev, K. Ya.: 1972, Radiation Processes in the Atmosphere, Second I.M.O. Lecture, WMO-No. 309, World Meteorol. Org., Geneva, 214 pp.

    Google Scholar 

  • Kraus, H.: 1958, Untersuchungen über den nächtlichen Energietransport und Energiehaushalt in der Bodennahen Luftschicht bei der Bildung von Strahlungsnebeln, Berichte des Deutsch. Wetterdienstes, 7, No. 48.

  • Lee, T. H. and Gille, J. C.: 1972, ‘Temperature propagation in a non-grey radiating fluid’, Proc. Conf. Atmos. Rad., Fort Collins, Colorado, Aug. 7–9, 1972, Amer. Meteorol. Soc., 271–275.

  • Lieske, B. J. and Stroschein, L. A.: 1967, Measurements of radiative flux divergence in the Arctic, Archiv Meteorol. Geophys. Bioklima., Ser. B, 15, 68–81.

    Google Scholar 

  • List, R. J.: 1966, Smithsonian Meteorological Tables, 6th ed., Smithsonian Misc. Collect., Vol. 114, Smithsonian Instit., Washington, D.C., 527 pp.

    Google Scholar 

  • Nunez, M. and Oke, T. R.: 1976, The energy balance of an urban canyon, submitted to J. Appl. Meteorol.

  • Okamoto, M.: 1971, Radiative and turbulent heat transfer under extremely stable conditions near the ground, Geophys. Mag. (Japan Meteorol. Agency), 35, 293–330.

    Google Scholar 

  • Okamoto, M. and Funk, J. P.: 1971, The divergence of eddy heat flux and the temperature fluctuations in stable conditions, Geophys. Mag. (Japan Meteorol. Agency), 35, 137–150.

    Google Scholar 

  • Oke, T. R. and East, C.: 1971, The urban boundary layer in Montreal, Boundary-Layer Meteorol. 1, 411–437.

    Google Scholar 

  • Oke, T. R. and Maxwell, G. B.: 1975, Urban heat island dynamics in Montréal and Vancouver, Atmos. Environ. 9, 191–200.

    Google Scholar 

  • Pasquill, F.: 1950, Some further considerations of the measurement and indirect evaluation of natural evaporation, Quart. J. Roy. Meteorol. Soc. 76, 287–301.

    Google Scholar 

  • Timanovskaya, R. G. and Farapanova, G. P.: 1967, Determination of the flux divergence in the atmospheric surface layer, Bull. U.S.S.R. Acad. Sci., Ser. Phys. Atmos. Ocean., 3, 742–748.

    Google Scholar 

  • Yamamoto, G.: 1952, On a radiation chart, Sci. Rep. Tohoku Univ., Ser. 5, 4, 9–23.

    Google Scholar 

  • Zdunkowski, W. and Trask, D. C.: 1971, Application of a radiative-conductive model to the simulation of nocturnal temperature changes over different soil types, J. Appl. Meteorol. 10, 937–948.

    Google Scholar 

  • Zdunkowski, W., Henderson, D., and Hales, J. V.: 1967, Prediction of nocturnal temperature changes during a calm night, Beit. Phys. Atmos. 40, 144–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunez, M., Oke, T.R. Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere. Boundary-Layer Meteorol 10, 121–135 (1976). https://doi.org/10.1007/BF00229280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229280

Keywords

Navigation