Skip to main content
Log in

Growth hormone effects on creatine uptake by muscle in the hypophysectomized rat

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Specific radioactive enzyme assays were developed to measure the effect of growth hormone on kidney transamidinase and liver methyltransferase in the hypophysectomized rat. In contrast to minimal changes (20%) in liver methyltransferase, kidney transamidinase was decreased threefold in the hypophysectomized rat. Enzyme activities were equal to normal values in those rats receiving growth hormone for three days. The formation of creatine from radioactive precursors and the uptake of 14C-creatine in muscle was examined under these conditions. After injection of 14C-arginine in the hypophysectomized rat, the 14C-creatine content of muscle was greatly decreased compared to sham operated controls and the 14C-creatine content was normal after growth hormone administration. After injection of 14C-guanidoacetate and of 14C-creatine, the 14C-creatine content of muscle was decreased in the hypophysectomized rat, but was equal to sham control values in rats receiving growth hormone. These studies indicate that the uptake of newly synthesized creatine by muscle is impaired in the hypophysectomized rat and that growth hormone can have a role in controlling the rate of creatine uptake by muscle in addition to its effect on kidney transamidinase and to other factors involved in creatine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner, S. and Rochovansky, O., 1956. Arch. Biochem. Biophys. 63, 277–295.

    Google Scholar 

  2. Ungar, F. and Van Pilsum, J. F., 1966. Endocrinol. 78, 1238–1247.

    Google Scholar 

  3. Karelin, A. A., 1972. Biull Eksp. Biol. Med. 73 (10), 39–42.

    Google Scholar 

  4. Keschavarz, K. and Fuller, H. L., 1971. J. Nutr. 101, 855–862.

    Google Scholar 

  5. Walker, J. B., 1963. Adv. Enzyme Reg. 1, 151–168.

    Google Scholar 

  6. Walker, J. B., 1959. Biochem. Biophys. Acta 36, 574–575.

    Google Scholar 

  7. Walker, J. B., 1960. J. Biol. Chem. 235, 2357–2361.

    Google Scholar 

  8. Krisko, I. and Walker, J. B., 1966. Acta Endocrinol. 53, 655–662.

    Google Scholar 

  9. Fitch, C. D., Hsu, C. and Dinning, J. S., 1960. J. Biol. Chem. 235, 2362–2364.

    Google Scholar 

  10. Van Pilsum, J. F. and Ungar, F., 1968. Arch. Biochem. Biophys. 124, 372–379.

    Google Scholar 

  11. Ungar, F. and Van Pilsum, J. F., 1966. Endocrinology 79, 1143–1148.

    Google Scholar 

  12. Van Pilsum, J. F., Carlson, M., Boen, J. R., Taylor, D. and Zakis, B., 1970. Endocrinology 87, 1237–1244.

    Google Scholar 

  13. Walker, J. B. and Walker, M. S., 1959. Proc. Soc. Exptl. Biol. Med. 101, 807–809.

    Google Scholar 

  14. Borsook, H. and Dubnoff, J. W., 1941. J. Biol. Chem. 138, 389–403.

    Google Scholar 

  15. Van Pilsum, J. F., Olsen, B., Taylor, D., Rozycki, T. and Pierce, J. C., 1963. Arch. Biochem. Biophys. 100, 520–524.

    Google Scholar 

  16. Gerber, G. B., Gerber, G., Altman, K. I. and Hempelmann, J., 1961. Rad. Res. 15, 307–313.

    Google Scholar 

  17. Walker, J. B., 1958. Proc. Soc. Exptl. Biol. Med. 98, 7–9.

    Google Scholar 

  18. Fitch, C. D., Hsu, C. and Dinning, J. S., 1961. J. Biol. Chem. 236, 490–492.

    Google Scholar 

  19. Dinning, J. S., Coker, R. and Fitch, C. D., 1959. Proc. Soc. Exptl. Biol. Med. 100, 118–120.

    Google Scholar 

  20. Van Pilsum, J. F., Berman, D. and Wolin, E., 1957. Proc. Soc. Exptl. Biol. Med. 95, 96–100.

    Google Scholar 

  21. Carlson, M. and Van Pilsum, J. F., 1973. Proc. Soc. Exptl. Biol. Med. 143, 1256–1259.

    Google Scholar 

  22. Liberti, J. P., Colla, J. C., Van Pilsum, J. F. and Ungar, F., 1966. Arch. Biochem. Biophys. 113, 718–724.

    Google Scholar 

  23. Masamune, H. and Yosizawa, A., 1953. Tohoku J. Exp. Med. 59, 1–9.

    Google Scholar 

  24. Loftfield, R. B., 1963. In: Advances of Tracer Methodology, (Rothchild, ed.), Vol. 1, Plenum Press, New York.

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  26. Van Pilsum, J. F., Blum, A., Behrens, P. and More, D., 1976. Fed. Proc. 35, 1657.

    Google Scholar 

  27. Fitch, C. D. and Shields, R. P., 1966. J. Biol. Chem. 241, 3611–3614.

    Google Scholar 

  28. Lee, Y. C. P. and Visscher, M. B., 1961. Proc. Nat. Acad. Sci. 47, 1510–1515.

    Google Scholar 

  29. Eggleton, P., 1930. J. of Physiol. 70, 294–300.

    Google Scholar 

  30. Koszalka, T. R. and Andrew, C. L., 1972. Proc. Soc. Exptl. Biol. Med. 139, 1265–1271.

    Google Scholar 

  31. Haughland, R. B. and Chang, D. T., 1975. Proc. Soc. Exptl. Biol. Med. 148, 1–4.

    Google Scholar 

  32. Lakatua, D., Van Pilsum, J. F. and Ungar, F., 1966. Acta Endocrinologica. 52, 210–220.

    Google Scholar 

  33. Ruiz-Torres, A., 1968. Z. Gesamte Exp. Med. 147, 7–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A.W.H., Ungar, F. Growth hormone effects on creatine uptake by muscle in the hypophysectomized rat. Mol Cell Biochem 25, 67–77 (1979). https://doi.org/10.1007/BF00228990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228990

Keywords

Navigation