Skip to main content

A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields

Abstract

The macaque putamen contains neurons that respond to somatosensory stimuli such as light touch, joint movement, or deep muscle pressure. Their receptive fields are arranged to form a map of the body. In the face and arm region of this somatotopic map we found neurons that responded to visual stimuli. Some neurons were bimodal, responding to both visual and somatosensory stimuli, while others were purely visual, or purely somatosensory. The bimodal neurons usually responded to light cutaneous stimulation, rather than to joint movement or deep muscle pressure. They responded to visual stimuli near their tactile receptive field and were not selective for the shape or the color of the stimuli. For cells with tactile receptive fields on the face, the visual receptive field subtended a solid angle extending from the tactile receptive field to about 10 cm. For cells with tactile receptive fields on the arm, the visual receptive field often extended further from the animal. These bimodal properties provide a map of the visual space that immediately surrounds the monkey. The map is organized somatotopically, that is, by body part, rather than retinotopical ly as in most visual areas. It could function to guide movements in the animal's immediate vicinity. Cortical areas 6, 7b, and VIP contain bimodal cells with very similar properties to those in the putamen. We suggest that the bimodal cells in area 6, 7b, VIP, and the putamen form part of an interconnected system that represents extrapersonal space in a somatotopic fashion.

This is a preview of subscription content, access via your institution.

References

  • Alexander GE (1987) Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Exp Brain Res 67:623–634

    Google Scholar 

  • Alexander GE, DeLong MR (1985a) Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 53:1401–1416

    Google Scholar 

  • Alexander GE, DeLong MR (1985b) Microstimulation of the primate neostriatum. II. Somatotopic organizationof striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53:1417–1430

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    Google Scholar 

  • Baker MA, Tyner CF, Towe AL (1971) Observations on single neurons recorded in the sigmoid gyri of awake, nonparalyzed cats. Exp Neurol 32:388–403

    Google Scholar 

  • Battaglini PP, Fattori P, Galletti C, Zeki S (1990) The physiology of area V6 in the awake, behaving monkey. J Physiol 423:100P

    Google Scholar 

  • Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of visual areas MST and FST in the macaque. J Comp Neurol 296:462–495

    Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    CAS  PubMed  Google Scholar 

  • Caan W, Perrett DI, Rolls ET (1984) Responses of striatal neurons in the behaving monkey. 2. Visual processing in the caudal neostriatum. Brain Res 290:53–65

    Google Scholar 

  • Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10:2039–2058

    Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Google Scholar 

  • Cavada C, Goldman-Rakic PS (1991) Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neurosci 42:683–696

    Google Scholar 

  • Colby CL, Duhamel J (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:517–537

    Google Scholar 

  • Colby CL, Duhamel J, Goldberg ME (1993) The ventral intraparietal area (VIP) of the macaque: anatomical location and visual response properties. J Neurophysiol 69:902–914

    CAS  PubMed  Google Scholar 

  • Crutcher MD, DeLong MR (1984a) Single cell studies of the primate putamen. I. Functional organization. Exp Brain Res 53:233–243

    Google Scholar 

  • Crutcher MD, DeLong MR (1984b) Single cell studies of the primate putamen. I. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258

    Google Scholar 

  • DeLong MR (1973) Putamen: activity of single units during slow and rapid arm movements. Science 179:1240–1242

    Google Scholar 

  • Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380

    Google Scholar 

  • Duhamel J, Colby CL, Goldberg ME (1991) Congruent representations of visual and somatosensory space in single neurons of monkey ventral intra-parietal cortex (area VIP). In: Paillard J (ed) Brain and space. Oxford University Press, New York, pp 223–236

    Google Scholar 

  • Fogassi L, Gallese V, di Pellegrino G, Fadiga L, Gentilucci M, Luppino G, Matelli M, Pedotti A, Rizzolatti G (1992) Space coding by premotor cortex. Exp Brain Res 89:686–690

    CAS  PubMed  Google Scholar 

  • Gentilucci M, Scandolara C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp Brain Res 50:464–468

    CAS  PubMed  Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Riz-zolatti G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475–490

    PubMed  Google Scholar 

  • Gross CG, Graziano MS (1990) Bimodal visual-tactile responses in the macaque putamen. Neurosci Abs 16:110

    Google Scholar 

  • Graziano MS, Gross CG (1992a) Somatotopically organized maps of near visual space exist. Behav Brain Sci 15:750

    Google Scholar 

  • Graziano MS, Gross CG (1992b) Coding of extrapersonal visual space in body-part centered coordinates. Neurosci Abs 18:593

    Google Scholar 

  • Hyvarinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303

    Google Scholar 

  • Hyvarinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692

    Google Scholar 

  • Jay MF, Sparks DL (1987) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55

    CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:739–820

    Google Scholar 

  • Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80

    Google Scholar 

  • Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93:525–546

    Google Scholar 

  • Kimura M (1986) The role of primate putamen neurons in the association of sensory stimuli with movement. Neurosci Res 3:436–443

    Google Scholar 

  • Kimura M, Rajkowski J, Evarts E (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81:4998–5001

    Google Scholar 

  • Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209

    Google Scholar 

  • Kunzle H (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 30:481–492

    Google Scholar 

  • Kunzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Leinonen L, Nyman G (1979) II. Functional properties of cells in anterolateral part of area 7 associative face area of awake monkeys. Exp Brain Res 34:321–333

    Google Scholar 

  • Leinonen L, Hyvarinen J, Nyman G, Linnankoski I (1979) I. Functional properties of neurons in the lateral part of associative area 7 in awake monkeys. Exp Brain Res 34:299–320

    CAS  PubMed  Google Scholar 

  • Liles SL (1983) Activity of neurons in the putamen associated with wrist movements in the monkey. Brain Res 263:156–161

    Google Scholar 

  • Liles SL (1985) Activity of neurons in putamen during active and passive movement of wrist. J Neurophysiol 53:217–236

    Google Scholar 

  • Liles SL, Updyke BV (1985) Projection of the digit and wrist area of precentral gyrus to the putamen: relation between topography and physiological properties of neurons in the putamen. Brain Res 339:245–255

    Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298

    CAS  PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2856

    CAS  PubMed  Google Scholar 

  • Mays LE, Sparks DL (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43:207–232

    Google Scholar 

  • Meredith AM, Stein BE (1985) Descending efferents from the superior colliculus relay integrated multisensory information. Science 227:657–659

    Google Scholar 

  • Mesulam M, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414

    Google Scholar 

  • Neal JW, Pearson RCA, Powell TPS (1988) The organization of the cortico-cortical connections between the walls of the lower part of the superior temporal sulcus and the inferior parietal lobule in the monkey. Brain Res 438:351–356

    Google Scholar 

  • Paillard J (1991) Motor and representational framing of space. In: Paillard J (ed) Brain and space. Oxford University Press, New York, pp 163–184

    Google Scholar 

  • Parthasarathy HB, Schall JD, Graybiel AM (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12:4468–4488

    Google Scholar 

  • Rizzolatti G, Berti A (1990) Neglect as a neural representation deficit. Rev Neurol (Paris) 146:626–634

    Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981a) Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2:125–146

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Camarda R, Fogossi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507

    CAS  PubMed  Google Scholar 

  • Robinson CJ, Burton H (1980a) Organization of somatosensory receptive fields in cortical areas 7b, retroinsular, postauditory, and granular Insula of M. fascicularis. J Comp Neurol 192:69–92

    Google Scholar 

  • Robinson CJ, Burton H (1980b) Somatic submodality distribution within the second somatosensory area (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 192:93–108

    Google Scholar 

  • Schlag J, Schlag-Rey M, Peck CK, Joseph JP (1980) Visual responses of thalamic neurons depending on the direction of gaze and the position of targets in space. Exp Brain Res 40:170–184

    Google Scholar 

  • Schultz W, Romo R (1988) Neuronal activity in the monkey striatum during the initiation of movements. Exp Brain Res 71:431–436

    Google Scholar 

  • Seltzer B, Pandya DN (1980) Converging visual and somatic cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res 192:339–351

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL (1991) The neural encoding of the location of targets for saccadic eye movements. In: Paillard J (ed) Brain and space. Oxford University Press, New York, pp 3–19

    Google Scholar 

  • Stanton GB, Cruce WLR, Goldberg ME, Robinson DL (1977) Some ipsilateral projections to areas PF and PG of the inferior parietal lobule in monkeys. Neurosci Lett 6:243–250

    Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    Google Scholar 

  • Vogt BA, Pandya DN (1978) Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey. J Comp Neurol 177:179–192

    Google Scholar 

  • Weber JT, Yin TCT (1984) Subcortical projections of the inferior parietal cortex (area 7) in the stump-tailed monkey. J Comp Neurol 224:206–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graziano, M.S.A., Gross, C.G. A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97, 96–109 (1993). https://doi.org/10.1007/BF00228820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228820

Key words

  • Space coding
  • Sensorimotor integration
  • Parietal cortex
  • Visually guided reaching
  • Monkey