Skip to main content
Log in

Evidence for a role of the cytoskeleton in the in vitro folliculogenesis of the thyroid gland of the fetal rat

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Thyrotropic hormone (TSH) or cAMP accelerate the formation of follicular cavities in the explanted thyroid gland of the 15-day-old rat fetus. Cytochalasin B or vinblastine and nocodazole or colchicine, which disorganize microfilamental and microtubular structures respectively, inhibit or completely block in vitro-induced folliculogenesis. Exposure of the thyroid tissue to lumicolchicine, a structural isomer of colchicine deprived of antimicrotubular activity, does not inhibit the activation of folliculogenesis induced by TSH. These results are strong evidence for the supposition that microfilaments and microtubules are involved in the TSH-stimulated mechanisms resulting in thyroid folliculogenesis. Folliculogenesis requires the integrity of both microfilaments and microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato PA, Loizzi RF (1979) The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices. Eur J Cell Biol 20:150–155

    Google Scholar 

  • Boyne AF (1978) Neurosecretion: integration of recent findings into the vesicle hypothesis. Life Sci 22:2057–2066

    Google Scholar 

  • Brown SS, Spudich JA (1981) Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 88:487–491

    Google Scholar 

  • Cheng K, Katsoyannis PG (1975) The inhibition of sugar transport and oxidation in fat cell ghosts by colchicine. Biochem Biophys Res Commun 64:1069–1075

    Google Scholar 

  • Chiraseveenuprapund P, Rosenberg IN (1974) Effects of colchicine on the formation of thyroid hormone. Endocrinology 94:1086–1093

    Google Scholar 

  • De Brabander MJ, Van De Veire RML, Aerts FEM, Borgers M, Janssen PAJ (1976) The effects of methyl [5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl] carbamate, (R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules on mammalian cells cultured in vitro. Cancer Res 36:905–916

    Google Scholar 

  • De Brabander M, Wanson JC, Mosselmans R, Geuens G, Drochmans P (1978) Effects of antimicrotubular compounds on monolayer cultures of adult rat hepatocytes. Biol Cell 31:127–140

    Google Scholar 

  • Douglas WW, Sorimachi M (1972a) Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Br J Pharmacol 45:129–132

    Google Scholar 

  • Douglas WW, Sorimachi M (1972b) Effects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones. Br J Pharmacol 45:143–144 P

    Google Scholar 

  • Dustin P (1978) Microtubules. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eagle H (1955) The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies and their cure. J Exp Med 102:595–600

    Google Scholar 

  • Ekholm R, Ericson LE, Josefsson JO, Melander A (1974) In vivo action of vinblastine on thyroid ultrastructure and hormone secretion. Endocrinology 94:641–649

    Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex) — (1954–1981) — from artifact to center stage. J Cell Biol 91:77S-103S

    Google Scholar 

  • Fisher MM, Phillips MJ (1979) Cytoskeleton of the hepatocyte. In: Popper H, Schaffner F (eds) Progress in liver diseases. Grune and Stratton Inc., New York, vol IV, p 105–121

    Google Scholar 

  • Gabrion J (1981) Relations entre l'appareil contractile et les phénomènes d'endocytose. Revue bibliographique et quelques données concernant la cellule thyroidienne. Biochimie 63:325–345

    Google Scholar 

  • Gillespie E (1975) Microtubules, cyclic cAMP, calcium and secretion. Ann NY Acad Sci 253:771–779

    Google Scholar 

  • Ketelbant-Baiasse P, Rodesch F, Neve P, Pasteeis JM (1973) Scanning electron microscope observations of apical surfaces of dog thyroid cells. Exp Cell Res 79:111–119

    Google Scholar 

  • Khar A, Kunnert-Radek J, Jutisz M (1979) Involvement of microtubule and microfilament system in the GnRH-induced release of gonadotropins by rat anterior pituitary cells in culture. FEBS Lett 104:410–414

    Google Scholar 

  • Kimmich GA, Randies J (1979) Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B. Am J Physiol 237:C56-C63

    Google Scholar 

  • Lacy PE (1975) Endocrine secretory mechanisms. A review. Am J Pathol 79:170–187

    Google Scholar 

  • Lacy PE, Malaisse WJ (1973) Microtubules and beta cell secretion. Rec Progr Horm Res 29:199–221

    Google Scholar 

  • Launay JF, Stock C, Grenier JF (1979) Interaction of vinblastine with the secretagogue action of db-cAMP in the rat exocrine pancreas. Exp Cell Res 118:171–180

    Google Scholar 

  • Lin DC, Lin S (1978) High affinity binding of (3H) dihydrocytochalasin B to peripheral membrane proteins related to the control of cell shape in the human red cell. J Biol Chem 253:1415–1419

    Google Scholar 

  • Lin DC, Lin S (1979) Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane. Proc Natl Acad Sci USA 76:2345–2349

    Google Scholar 

  • Lin S, Lin DC, Flanagan MD (1978) Specificity of the effects of cytochalasin B on transport and motile processes. Proc Natl Acad Sci USA 75:329–333

    Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Van Obberghe N, Somers G, Devis G, Ravazzola M, Orci L (1975) Role of microtubules in the phasic pattern of insulin release. Ann NY Acad Sci 253:630–652

    Google Scholar 

  • Morisset J, Beaudoin AR (1977) Biochemical reactions involved in pancreatic enzyme secretion. 4. Effects of cytochalasin B on functions of the exocrine pancreas. Can J Physiol Pharmacol 55:644–651

    Google Scholar 

  • Moskalewski S, Thyberg J, Friberg U (1980) Cold and metabolic inhibitor effects on cytoplasmic microtubules and the Golgi complex in cultured rat epiphyseal chondrocytes. Cell Tissue Res 210:403–415

    Google Scholar 

  • Nakazato Y, Douglas WW (1973) Cytochalasin blocks sympathetic ganglionic transmission: a presynaptic effect antagonized by pyruvate. Proc Natl Acad Sci USA 70:1730–1733

    Google Scholar 

  • Neve P, Willems C, Dumont JE (1970) Involvement of the microtubule -microfilament system in thyroid secretion. Exp Cell Res 63:457–460

    Google Scholar 

  • Neve P, Ketelbant-Balasse P, Willems C, Dumont JE (1972) Effects of inhibitors of microtubules and microfilaments on dog thyroid slices in vitro. Exp Cell Res 74:227–244

    Google Scholar 

  • Patton S, Stemberger BH, Knudson CM (1977) The suppression of milk fat globule secretion by colchicine: an effect coupled to inhibition of exocytosis. Biochim Biophys Acta 499:404–410

    Google Scholar 

  • Penel C, Remy L, Rua S, Mazzella E (1982) Golgi secretion and follicular genesis in rat foetal thyroid. Acta Stereol 1:329–334

    Google Scholar 

  • Pic P, Remy L, Mazzella E, Rua S (1983) Cyclic AMP as the second hormonal messenger in the in vitro folliculogenesis of the foetal thyroid gland of the rat. Cell Tissue Res 232:65–77

    Google Scholar 

  • Pipeleers DG, Pipeleers-Marichal MA, Kipnis DM (1976) Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets. Science 191:88–90

    Google Scholar 

  • Poisner AM, Cooke P (1975) Microtubules and the adrenal medulla. Ann NY Acad Sci 253:653–669

    Google Scholar 

  • Prentki M, Chaponnier C, Jeanrenaud B, Gabbiani G (1979) Actin microfilaments, cell shape, and secretory processes in isolated rat hepatocytes. Effect of phalloidin and cytochalasin D. J Cell Biol 81:592–607

    Google Scholar 

  • Rasmussen H, Goodman DBP (1975) Calcium and cAMP as interrelated intracellular messengers. Ann NY Acad Sci 253:789–796

    Google Scholar 

  • Remy L, Michel-Bechet M, Athouel-Haon AM, Magre S, Cataldo C, Jost A (1980) Development of the thyroid gland in the rat fetus in vivo. An ultrastructural and radioautographic study. Arch Anat Micr Morphol Exp 69:91–108

    Google Scholar 

  • Remy L, Penel C, Rua S, Mazzella E, Michel-Bechet M (1983) Thyrotropin effects on vesicle transfer and thyroid follicle morphogenesis: a stereological study in the rat. Biol Cell 49, 145–152

    Google Scholar 

  • Remy L, Verrier B, Michel-Bechet M, Mazzella E, Athouel-Haon AM (1983) Thyroid follicular morphogenesis mechanism: organ culture of the fetal gland as an experimental approach. J Ultrastruct Res 82:283–295

    Google Scholar 

  • Roberts K (1974) Cytoplasmic microtubules and their functions. In: Butler JAV, Noble D (eds) Progress in biophysics and molecular biology. Pergamon Press, Oxford, 28:pp 373–420

  • Smith JE, Deen DD, Sklan D, Goodman DWS (1980) Colchicine inhibition of retinal binding protein secretion by rat liver. J Lipid Res 21:229–237

    Google Scholar 

  • Stock C, Launay JF, Vasseur M, Grenier JF (1978) Microfilaments et cytochalasine B. Gastroenterol Clin Biol 2:635–651

    Google Scholar 

  • Tramontano D, Avivi A, Ambesi-Impiombato FS, Barak L, Geiger B, Schlessinger J (1982) Thyrotropin induces changes in the morphology and the organization of microfilament structures in cultured thyroid cells. Exp Cell Res 137:269–275

    Google Scholar 

  • Thyberg J, Piasek A, Moskalewski S (1980) Effects of colchicine on the Golgi complex and GERL of cultured rat peritoneal macrophages and epiphyseal chondrocytes. J Cell Sci 45:42–58

    Google Scholar 

  • Williams JA, Wolff J (1971) Cytochalasin B inhibits thyroid secretion. Biochem Biophys Res Commun 44:422–425

    Google Scholar 

  • Wilson L, Bryan J (1974) Biochemical and pharmacological properties of microtubules. Adv Cell Mol Biol 3:21–72

    Google Scholar 

  • Wilson L, Friedkin M (1967) The biochemical events of mitosis. II. The in vivo and in vitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis. Biochemistry 6:3126–3135

    Google Scholar 

  • Wilson L, Bamburg JR, Mizel SB, Grisham LM, Creswell KM (1974) Interaction of drugs with microtubule proteins. Fed Proc 33:158–166

    Google Scholar 

  • Wolff J, Bhattacharyya (1975) Microtubules and thyroid hormone mobilization. Ann NY Acad Sci 253:763–770

    Google Scholar 

  • Wolff J, Williams JA (1973) The role of microtubules and microfilaments in thyroid secretion. Rec Progr Horm Res 29:229–285

    Google Scholar 

  • Zamora PO, Waterman RE, Kerkof PR (1979) Early effects of thyrotropin on the surface morphology of thyroid cells in culture. J Ultrastruct Res 69:196–210

    Google Scholar 

  • Zor U (1983) Role of cytoskeletal organization in the regulation of adenylate cyclase-cyclic adenosine monophosphate by hormones. Endocrinol Rev 4:1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pic, P., Remy, L., Athouel-Haon, AM. et al. Evidence for a role of the cytoskeleton in the in vitro folliculogenesis of the thyroid gland of the fetal rat. Cell Tissue Res. 237, 499–508 (1984). https://doi.org/10.1007/BF00228434

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228434

Key words

Navigation