Skip to main content
Log in

On the mechanism of action of the phagocytosis-stimulating peptide tuftsin

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Incubation of human polymorphonuclear leukocytes (PMNL) or thioglycollate-stimulated mouse peritoneal macrophages with the phagocytosis-stimulating peptide, tuftsin (2.5 × 10−7 M, at 37 °C), caused an increase of 89–90% in intracellular cGMP levels, accompanied by a decrease of 20–25% in intracellular cAMP levels. Significant changes in cyclic nucleotide levels were detectable after 4 min of incubation, were maximal at 10–20 min and persisted for at least 60 min. The concentration dependences of the stimulatory effect of tuftsin on modulation of intracellular levels of cyclic nucleotides and on phagocytosis are similar, suggesting a cause and effect relationship between the two phenomena. This notion is further supported by the finding that 8-Br-cGMP and 8-Br-cAMP elicit stimulatory and inhibitory effects on macrophage phagocytosis, respectively. Measurement of 45Ca2+ influx into PMNL and macrophages in the presence and absence of tuftsin did not reveal any change in 45Ca2+ uptake from the media. However, tuftsin did enhance release of 45Ca2+ from cells preloaded with the isotope. Results suggest that modulation of both the amount of cell-associated 45Ca2+ and the intracellular levels of cyclic nucleotides are key steps in the mechanism by which tuftsin augments phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Najjar, V. A. and Nishioka, K., 1970. Nature 228, 672–673.

    Google Scholar 

  2. Constantopoulos, A. and Najjar, V. A., 1972. Cytobios. 6, 97–100

    Google Scholar 

  3. Martinez, J., Winternitz, F. and Vindel, J., 1977. Eur. J. Med. Chem. Chim. Therap. 12, 511–516.

    Google Scholar 

  4. Nishioka, K., Satoh, P. S., Constantopoulos, A. and Najjar, V. A., 1973. Biochim. Biophys. Acta 310, 230–237.

    Google Scholar 

  5. Tzehoval, E., Segal, S., Stabinsky, Y., Fridkin, M., Spirer, Z. and Feldman, M., 1978. Proc. Nall. Acad. Sci. USA 75, 3400–3404.

    Google Scholar 

  6. Fridkin, M., Stabinsky, Y., Zakuth, V. and Spirer, Z., 1977. Biochim. Biophys. Acta 496, 203–211.

    Google Scholar 

  7. Stabinsky, Y., Fridkin, M., Zakuth, V. and Spirer, Z., 1978. Int. J. Peptide Protein Res. 12, 130–135.

    Google Scholar 

  8. Stabinsky, Y., Pundak, S., Wilchek, M. and Fridkin, M., 1978. IUPAC Second International Symposium on Organic Chemistry, Jerusalem, Haifa, Israel, Abst. p. 69.

  9. Stabinsky, Y., Gottlieb, P., Zakuth, V., Spirer, Z. and Fridkin, M., 1978. Biochem. Biophys. Res. Commun. 83, 599–606.

    Google Scholar 

  10. Bar-Shavit, Z., Stabinsky, Y., Fridkin, M. and Goldman, R., 1979. J. Cell Physiol. 100, 55–62.

    Google Scholar 

  11. Cox, J. D. and Karnovsky, M. D., 1973. J. Cell Biol. 59, 480–490.

    Google Scholar 

  12. Ignarro, L. J. and Cech, S. Y., 1976. Proc. Soc. Exp. Biol. Mod. 151, 448–452.

    Google Scholar 

  13. Boyum, A., 1978. Scand. J. Clin. Lab. Invest. 21, Suppl. 97, 77–89.

    Google Scholar 

  14. Williams, L. T., Synderman, R., Pike, M. C. and Lefkowitz, R. J., 1977. Proc. Natl. Acad. Sci. USA 74, 1204–1208.

    Google Scholar 

  15. Rivkin, I., Rosenblatt, J. and Becker, E. L., 1975. J. Immunol. 115, 1126–1134.

    Google Scholar 

  16. Hill, H. R., 1978. In Leukocytes Chemotaxis: Methods, Physiology and Clinical Implications, Edited by J. I. Gallin and P. G. Quie, Raven Press, New York, pp. 179–193.

  17. Spirer, Z., Zakuth, V., Golander, A. and Bogair, N., 1975. Experientia 31, 118–119.

    Google Scholar 

  18. Zurier, R. B., Weissmann, G., Hoffstein, S., Kammerman, S. and Tai, H. H., 1974. J. Clin. Invest. 53, 297–309.

    Google Scholar 

  19. Ignarro, L. J. and George, W. J., 1974. Proc. Natl. Acad. Sci. USA 71, 2027–2031.

    Google Scholar 

  20. Estensen, R. D., Hill, H. R., Quie, P. G., Hogan, N. and Goldberg, N. A., 1973. Nature 245, 458–460.

    Google Scholar 

  21. Sandler, J. A., Gallin, J. I. and Vaughan, M., 1975. J. Cell. Biol. 67, 480–484.

    Google Scholar 

  22. Hill, H. R., Estensen, R. D., Quie, P. G., Hogan, N. A. and Goldberg, N. D., 1975. Metabolism 24, 447–456.

    Google Scholar 

  23. Bourne, H. R., Lehrer, R. I., Cline, M. J. and Melmon, K. L., 1971. J. Clin. Inves. 50, 920–929.

    Google Scholar 

  24. Ignarro, L. J. and Cech, S. Y., 1975. J. Cyclic Nucleotide Res. 1, 283–292.

    Google Scholar 

  25. Goldberg, N. D. and Haddox, M. K., 1977. Ann. Rev. Biochem. 46, 823–896.

    Google Scholar 

  26. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E. and Sutherland, E. W., 1973. Proc. Natl. Acad. Sci. USA 70, 3889–3893.

    Google Scholar 

  27. Smith, R. J. and Ignarro, L. J., 1975. Proc. Natl. Acad. Sci. USA 72, 108–112.

    Google Scholar 

  28. Ferrendelli, J. A., Kinscherf, D. A. and Chang, M. M., 1973. Mol. Pharmacol. 9, 445–454.

    Google Scholar 

  29. May, R. J., Conlon, T. P., Erspamer, V. and Gardner, J. D., 1978. Am. J. Physiol. 235, E112-E118.

    Google Scholar 

  30. Manganiello, V. and Vaughan, M., 1972. Proc. Natl. Acad. Sci. USA 69, 269–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabinsky, Y., Bar-Shavit, Z., Fridkin, M. et al. On the mechanism of action of the phagocytosis-stimulating peptide tuftsin. Mol Cell Biochem 30, 71–77 (1980). https://doi.org/10.1007/BF00227920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227920

Keywords

Navigation