Skip to main content
Log in

Phosphoinositide-generated messengers in cardiac signal transduction

  • Part I: Basic Mechanisms
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A multitude of agonists like e.g. endothelin-I, angiotensin-II, serotonin, thrombin, histamine and vasopressin as well as α1-adrenergic and muscarinic stimulation lead to stimulation of the phosphoinositide cycle in the heart. Besides this seven membrane spanning-domain receptor-coupled stimulation of the key enzyme of the phosphoinositide cycle, phospholipase C-β, another class of hormones, growth factors, also couple to the phosphoinositide cycle, now through receptors with intrinsic tyrosine kinase activity that can phosphorylate and stimulate the phospholipase C-γ isozyme. In this review we summarize the multitude of receptor (sub)types, G-protein-subunit- and phospholipase C-isozymes that are present in the heart. Furthermore, generation of second messengers and cellular responses are described together with the (patho)physiological implications for the heart of phosphoinositide cycle activation and second messenger accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mills A, Duggan MJ: Orphan seven transmembrane domain receptors: reversing pharmacology. Trends Pharmacol Sci 14: 394–396, 1993

    Google Scholar 

  2. Okazaki H, Ischizaki N, Sakurai T, Kurokaa K, Goto K, Kumada M, Takuwa Y: Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun 190: 1104–1109, 1993

    Google Scholar 

  3. Ischizaka N, Okazaki H, Kurokawa K, Kumada M, Takuwa Y: Molecular cloning of a novel putative G protein-coupled receptor from rat aortic smooth muscle. Downregulation of the mRNA level by the cAMP messenger pathway. Biochim Biophys Acta 1218: 173–180, 1994

    Google Scholar 

  4. Terzic A, Pucéat A, Vassort G, Vogel SM: Cardiac α1-adrenoceptors: an overview. Pharmacol Rev 45: 147–175, 1993

    Google Scholar 

  5. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman MP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ, Peter B, Bailey DS: Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologies. J Pharmacol Exp Therap 272: 134–142, 1995

    Google Scholar 

  6. Rokosh DG, Bailey BA, Stewart AFR, Karns LR, Long CS, Simpson PC: Distribution of α1C-adrenergic receptor mRNA in adult rat tissues by RNase protection assay and comparison with α1B and α1D. Biochem Biophys Res Commun 200, 1177–1184, 1994

    Article  CAS  PubMed  Google Scholar 

  7. Stewart AFR, Rokosh DG, Bailey BA, Karns LR, Chang KV, Long CS, Kariya K-I, Simpson PC: Cloning of the rat α1c-adrenergic receptor from cardiac myocytes. α1c, α1b, and α1d mRNAs are present in cardiac myocytes but not in cardiac fibroblasts. Circ Res 75: 796–802, 1994

    Google Scholar 

  8. Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishoihara K, Brown JH, Chien KR: The α1A-adrenergic receptor subtype mediates biochemical, molecular and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 268: 15374–15380, 1993

    Google Scholar 

  9. Lazou A, Fuller SJ, Bogoyevitch MA, Orfali KA, Sugden PH: Characterization of stimulation of phosphoinositide hydrolysis by α1-adrenergic agonists in adult rat hearts. Am J Physiol 267: H970-H978, 1994

    Google Scholar 

  10. Timmermans PBMWM, Smith RD: Angiotensin II receptor subtypes: selective antagonists and functional correlates. Eur Heart J 15 (Suppl D): 79–85, 1994

    Google Scholar 

  11. Gasc J-M, Shanmugam S, Sibony M, Corvol P: Tissue-specific expression of type 1 angiotensin receptor subtypes. An in situ hybridization study. Hypertension 24: 531–537, 1994

    Google Scholar 

  12. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M: Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93: 1592–1601, 1994

    Google Scholar 

  13. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M: Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 71: 1482–1489, 1992

    Google Scholar 

  14. Sadoshima J-I, Izumo S: Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ Res 73: 424–438, 1993

    Google Scholar 

  15. Lokuta AJ, Cooper C, Gaa ST, Wang HE, Rogers TB: Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem 269: 4832–4838, 1994

    Google Scholar 

  16. Sakurai T, Yanagisawa M, Masaki T: Molecular characterization of endothelin receptors. Trends Pharmacol Sci 13: 103–108, 1992

    Google Scholar 

  17. Simonson MS: Endothelins: multifunctional renal peptides. Physiol Rev 71: 375–411, 1993

    Google Scholar 

  18. Luscher TF, Oemar BS, Boulanger CM, Hahn AWA: Molecular and cellular biology of endothelin and its receptors-Part I. J Hypertension 11: 7–11, 1993

    Google Scholar 

  19. Luscher TF, Oemar BS, Boulanger CM, Hahn AWA: Molecular and cellular biology of endothelin and its receptors-Part II. J Hypertension 11: 121–126, 1993

    Google Scholar 

  20. Suzuki T, Kumazaki T, Mitsui Y: Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem Biophys Res Commun 191: 823–830, 1993

    Google Scholar 

  21. Irons CE, Murray SF, Glembotski CG: Identification of the receptor subtype responsible for endothelin-mediated protein kinase C activation and atrial natriuretic factor secretion from atrial myocytes. J Biol Chem 268: 23417–23421, 1993

    Google Scholar 

  22. Halil-Dandan R, Merck DT, Lujan JP, Brunton LL: Coupling of the type A Endothelin receptor to multiple responses in adult rat cardiac myocytes. Molec Pharmacol 45: 1183–1190, 1994

    Google Scholar 

  23. Vogelsang M, Brodde-Sitz A, Schäffer E, Zerkowski H-R, Brodde OE: Endothelin ETA-receptors couple to inositol phosphate formation and inhibition of adenylate cyclase in human right atrium. J Cardiovasc Pharmacol 23: 344–347, 1994

    Google Scholar 

  24. Ono K, Eto K, Sakamoto A, Masaki T, Shibata K, Sada T, Hashimoto K, Tsujimoto G: Negative chronotropic effect of Endothelin 1 mediated through ETA receptors in guinea pig atria. Circ Res 76: 284–292, 1995

    Google Scholar 

  25. Woodcock EA, Land SL, Andrews RK: A low affinity, low molecular weight endothelin-A receptor present in neonatal rat heart. Clin Exp Pharmacol Physiol 20, 331–334, 1993

    Google Scholar 

  26. Bonner TI: The molecular basis of muscarinic receptor diversity. Trends Neurosci 12, 148–151, 1989

    Google Scholar 

  27. Gusovsky F, Lueders JE, Kohn EC, Felder CC: Muscarinic receptor-mediated tyrosine phosphorylation of phospholipase C-γ. An alternative mechanism for cholinergic-induced phosphoinositide breakdown. J Biol Chem 268: 7768–7772, 1993

    Google Scholar 

  28. Gallo MP, Alloatti G, Eva C, Oberto A, Levi RC: M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular myocytes. J Physiol 471: 41–60, 1993

    Google Scholar 

  29. Gadbut AP, Galpers JB: A novel M3 muscarinic acetylcholine receptor is expressed in chick atrium and ventricle. J Biol Chem 269: 25823–25829, 1994

    Google Scholar 

  30. Jones LG, Goldstein D, Brown JH: Guanine nucleotide-dependent Inositol trisphosphate production in chick heart cells. Circ Res 62: 299–305, 1988

    Google Scholar 

  31. Tajima T, Tsuji Y, Brown JH, Pappano AJ: Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization and positive inotropic effect of carbachol in chick atria. Circ Res 61: 436–445, 1987

    Google Scholar 

  32. Chien WW, Mohabir R, Clusin WT: Effect of thrombin on calcium homeostasis in chick embryonic heart cells. Receptor-operated calcium entry with inositol trisphosphate and a pertussis toxin-sensitive G protein as second messengers. J Clin Invest 85, 1436–1443, 1990

    Google Scholar 

  33. Glembotski CC, Irons CE, Krown KA, Murray SF, Sprenkle AB, Sei CA: Myocardial α-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem 268: 20646–20652, 1993

    Google Scholar 

  34. Park TH, McHowat J, Wolf RA, Corr PB: Increased lysophosphatidyleholine content induced by thrombin receptor stimulation in adult rabbit cardiac ventricular myocytes. Cardiovase Res 28: 1263–1268, 1994

    Google Scholar 

  35. Yamada M, Hamamori Y, Akati H, Yokoyama M: P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of CAMP in cultured ventricular myocytes. Circ Res 70: 477–485, 1992

    Google Scholar 

  36. Zheng J-S, Boluyt MO, O'Neill L, Crow MT, Lakatta EG: Extracellular ATP induces immediate-early gene expression but not cellular hypertrophy in neonatal cardiac myocytes. Circ Res 74: 1034–1041, 1994

    Google Scholar 

  37. Endoh M, Takanashi M, Norota I: Effects of vasopressin on phosphoinositide hydrolysis and myocardial contractility. Eur J Pharmacol 218, 355–358, 1992

    Google Scholar 

  38. Hamamori Y, Yokoyama M, Yamada M, Akita H, Goshima K, Fukuzaki H: 5-Hydroxytryptamine induces phospholipase C-mediated hydrolysis of phosphoinositides through 5-hydroxytryptamine-2 receptors in cultured fetal mouse ventricular myocytes. Circ Res 66: 1474–1483, 1990

    Google Scholar 

  39. Brown JH, Martinson JH: Phosphoinositide-generated second messengers in cardiac signal transduction. Trends Cardiovasc Med 2: 209–213, 1992

    Google Scholar 

  40. Hattori Y, Gando S, Nagashima M, Kanno M: Histamine receptors mediating a positive inotropic effect in guinea pig and rabbit ventricular myocardium: distribution of the receptors and their possible intracellular coupling processes. Jpn J Pharmacol 65: 327–336, 1994

    Google Scholar 

  41. Fantl WJ, Johnson DE, Williams LT: Signalling by receptor tyrosine kinases. Annu Rev Biochem 62: 453–481, 1993

    Google Scholar 

  42. Long CS, Henrich CJ, Simpson PC: A growth factor for cardiac myocytes is produced by cardiac myocytes. Cell Regul 2: 1081–1095, 1991

    Google Scholar 

  43. Bogoyevitch MA, Glennon PE, Andersson MB, Clark A, Lazou A, Marshall CJ, Parker PJ, Sugden PH: Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signalling cascade in cardiac myocytes. J Biol Chem 269: 1110–1119, 1994

    Google Scholar 

  44. Fuller SJ, Johnson DE, Williams LT: Signalling by receptor tyrosine kinases. Annu Rev Biochem 62: 453–481, 1992

    Google Scholar 

  45. Donath MY, Zapf J, Eppenberger-Eberhardt M, Froesch ER, Eppenberger HM: Insulin-like growth factor stimulates myofibril development and decreases smooth muscle α-actin of adult cardiomyocytes. Proc Natl Acad USA 91: 1686–1690, 1994

    Google Scholar 

  46. Kajstura J, Cheng W, Reiss K, Anversa P: The IGF-1—IGF-1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy in vitro. Exp Cell Res 215: 273–283, 1994

    Google Scholar 

  47. Neer EJ: Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249–257, 1995

    Google Scholar 

  48. Iniguez-Lluhi J, Kleuss C, Gilman AG: The importance of G-protein βγ subunits. Trends Cell Biol 3: 230–236, 1993

    Google Scholar 

  49. Neer EJ, Clapham DE Signal transduction through G-proteins in the cardiac myocyte. Trends Cardiovasc Med 2: 6–11, 1992

    Google Scholar 

  50. Berridge M: Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993

    Article  CAS  PubMed  Google Scholar 

  51. Boyer JL, Paterson A, Harden TK: G-protein mediated regulation of phospholipase C. Involvement of G-proteins. Trends Cardiovasc Med 2: 209–213, 1994

    Google Scholar 

  52. Lee CH, Park D, Wu D, Rhee SG, Simon MI: Members of the Gq α subunit gene family activate phospholipase C-β isoenzymes. J Biol Chem 267: 16044–16047, 1992

    Google Scholar 

  53. Baek KJ, Das T, Gray C, Antar C, Murugesan G, ImM-J: Evidence that the Gh protein is a signal mediator from α1-adrenoceptor to a phospholipase C. I. Identification of α1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. J Biol Chem 268: 27390–27397, 1993

    Google Scholar 

  54. Nakaoka H, Perez DM, Beak KJ, Das T, Husain A, Misono K, Im M-J, Graham RM: Gh: a GTP-binding protein with transglutaminase activity and receptor signalling function. Science 264: 1593–1596, 1994

    Google Scholar 

  55. Burnstein ES, Spalding TA, Braunetr-osborne, Brann MR: Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Lett 363: 261–263, 1995

    Google Scholar 

  56. Tagikawa M, Sakurai T, Kasuya Y, Abe Y, Masaki T, Goto K: Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228: 102–108, 1995

    Google Scholar 

  57. Rhee SG, Choi KD: Regulation of inositol phospholipid-specific phospholipase C isoenzymes. J Biol Chem 267: 123939–12396, 1992

    Google Scholar 

  58. Jhon D-Y, Lee H-H, Park D, Lee C-W, Lee K-H, Yoo OJ, Rhee SG: Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J Biol Chem 268: 6654–6661, 1993

    Google Scholar 

  59. Jiang H, Wu D, Simon MI: Activation of phospholipase C β4 by heterotrimeric GTP-binding proteins. J Biol Chem 269: 7593–7596, 1994

    Google Scholar 

  60. Van Heugten HAA, Bezstarosti K, Dekkers DHW, Lamers JMJ: Homologous desensitization of the endothelin-1 receptor mediated phosphoinositide response in cultured neonatal rat cardiomyocytes. J Mol Cell Cardiol 25: 41–52, 1993

    Google Scholar 

  61. De Jonge HW, Van Heugten HAA, Bezstarosti K, Lamers JMJ: Distinct α1-adrenergic agonist- and endothelin-1-evoked phosphoinositide cycle responses in cultured neonatal rat cardiomyocytes. Biochem Biophys Res Commun 203: 422–429, 1994

    Google Scholar 

  62. Woodcock EA, Tanner JK, Fullerton M, Kuraja IJ: Differential pathways of inositol phosphate metabolism in intact neonatal rat hearts and isolated cardiomyocytes. Biochem J 281: 683–688, 1992

    Google Scholar 

  63. Woodcock EA, Suss MB, Anderson KE: Inositol phosphate release and metabolism in rat left atria. Circ Res 76: 252–260, 1995

    Google Scholar 

  64. Fitzgerald M, Anderson KE, Woodcock EA: Inositol 1,4,5-trisphosphate receptor function in neonatal cardiomyocytes. Eur J Pharmacol 268: 275–278, 1994

    Google Scholar 

  65. Abdellatif MM, Neubauer CF, Lederer WJ, Roger TB: Angiotensine-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circ Res 69: 800–809, 1991

    Google Scholar 

  66. Van Heugten HAA, De Jonge HW, Goedbloed MA, Bezstarosti K, Sharma HS, Verdouw PD, Lamers JMJ: Intracellular signalling and genetic reprogramming during development of hypertrophy in cultured cardiomyocytes. In: N.S. Dhalla, P.K. Singal, R.E. Beamisch (eds). Heart Hypertrophy and Failure. Kluwer Academic Publishers, Boston, 1995, pp 79–92

    Google Scholar 

  67. Van Heugten HAA, De Jonge HW, Bezstarosti K, Lamers JMJ: Calcium and the endothelin-1 and α1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes. J Mol Cell Cardiol 26: 1081–1093, 1994

    Google Scholar 

  68. De Jonge HW, Atsma DE, Van der Valk-Kokshoorn EJM, Van Heugten HAA, Van der Laarse A, Lamers JMJ: Alpha-adrenergic agonist and endothelin-1 induced intracellular Ca2+ response in the presence of a Ca2+ entry blocker in cultured rat ventricular myocytes. Cell Calcium 18: 515–525, 1995

    Google Scholar 

  69. Kohmoto O, Ikenouchi H, Hirata Y, Momomura S, Serizawa T, Barry WH: Variable effects of endothelin-1 on [Ca2+], transients, pHi, and concentration in ventricular myocytes. Am J Physiol 265: H793-H800, 1993

    Google Scholar 

  70. Ikenouchi H, Bridge JHB, Lorrel BH, Zhao L, Barry WH: Effects of angiotensin II on [Ca2+]i, motion Ca2+, and pHi in adult rabbit cardiomyocytes. Circulation 86 (Suppl I): I-218, 1992

    Google Scholar 

  71. Endoh M: The effects of various drugs on the myocardial inotropic response. Gen Pharmacol 26: 1–31, 1995

    Google Scholar 

  72. McDonough PM, Brown JH, Glembotski CCP: Phenylephrine and endothelin differentially stimulate hydrolysis and ANF expression. Am J Physiol 264: H625-H630, 1993

    Google Scholar 

  73. Lamers JMJ, Eskildsen-Helmond YEG, Resink AM, De Jonge HW, Bezstarosti K, Sharma HS, Van Heugten HAA: Endothelin-1-induced phospholipase C-β and D and protein kinase C isoenzyme signalling leading to hypertrophy in rat cardiomyocytes. J Cardiovasc Pharmacol 26 (suppl. 3): S100-S103, 1995

    Google Scholar 

  74. Bogoyevitch MA, Parker PJ, Sugden PH: Characterization of protein kinase C isotype expression in adult rat heart. A protein kinase C-ɛ is a major isotype present, and it is activated by phorbolesters, epinephrine and endothelin. Circ Res 72: 757–767, 1993

    Google Scholar 

  75. Rogers TB, Lokuta AJ: Angiotensin II signal transduction pathways in the cardiovascular system. Trends Cardiovasc Med 4: 110–116, 1994

    Google Scholar 

  76. De Jonge HW, Van Heugten HAA, Lamers JMJ: Signal transduction by the phosphatidylinositol cycle in myocardium. J Mol Cell Cardiol 27: 93–106, 1995

    Google Scholar 

  77. Capogrossi MC, Kaku T, Filbum CR, Pelto DL, Hansford RG, Spurgeon HA, Lakatta EG: Phorbolester and dioctanoylglycerol stimulate membrane association of protein kinase C and have negative inotropic effect mediated by changes in cytosolic Ca2+ in adult rat cardiac myocytes. Circ Res 66: 1143–1155, 1990

    Google Scholar 

  78. Speechly-Dick ME, Mocanu MM, Yellon DM: Protein kinase C. Its role in ischemic preconditioning in the heart. Circ Res 75: 586–590, 1994

    Google Scholar 

  79. Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee, A: Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 76: 73–85, 1995

    Google Scholar 

  80. Van Heugten HAA, De Jonge HW, Bezstarosti K, Sharma HS, Verdouw PD, Lamers JMJ: Intracellular signalling and genetic reprogramming during agonist-induced hypertrophy of cardiomyocytes. In: W.C. Claycomb, P. Di Nardo (eds). Cardiac growth and regeneration. Annals New York Acad Sci 72: 343–352, 1995

  81. Kariya KI, Kams LR, Simpson PC: Expression of a constitutively activated mutant of the β-isozyme of protein kinase C in cardiac myocytes stimulates the promotor of the β-myosin heavy chain. J Biol Chem 266: 10023–10026, 1992

    Google Scholar 

  82. Shubeita HE, Martinson EA, Van Bilsen M, Chien KR, Brown JH: Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 89: 1305–1309, 1992

    Google Scholar 

  83. Sei CA, Irons CE, Sprenkle AB, McDonough PM, Brown JH, Glembotski GC: The α-adrenergic stimulation of atrial natriuretic factor expression in cardiac myocytes requires calcium influx, protein kinase C, and calmodulin-regulated pathways. J Biol Chem 266: 15910–15916, 1991

    Google Scholar 

  84. Sadoshima J-I, Izumo S: Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12: 1681–1692, 1993

    Google Scholar 

  85. Kojima M, Shiojima I, Yamazaki T, Komuro I, Yunzeng Z, Yimg W, Mizuno T, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y: Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signalling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circ 89: 2204–2211, 1994

    CAS  PubMed  Google Scholar 

  86. Ito H, Hiroe M, Hirata Y, Fujisaka H, Adachi S, Akimoto H, Ohta Y, Marumo F: Endothelin ETA receptor antagonist blocks cardiac hypertrophy provoked by haemodynamic overload. Circ 89: 2198–2203, 1994

    Google Scholar 

  87. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Marumo F, Hiroe M: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92: 398–403, 1993

    Google Scholar 

  88. Van Heugten HAA, Bezstarosti K, Lamers JMJ: Endothelin-1 and phenylephrine-induced activation of the phosphoinositide cycle increases cell injury of cultured cardiomyocytes exposed to hypoxia/reoxygenation. J Mol Cell Cardiol 26: 1513–1524, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Heugten, H.A.A., Eskildsen-Helmond, Y.E.G., de Jonge, H.W. et al. Phosphoinositide-generated messengers in cardiac signal transduction. Mol Cell Biochem 157, 5–14 (1996). https://doi.org/10.1007/BF00227875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227875

Key words

Navigation