Skip to main content
Log in

Fructose-2,6-P2, chemistry and biological function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

A new activator of phosphofructokinase, which is bound to the enzyme and released during its purification, has been discovered. Its structure has been determined as β-D Fructose-2,6-P2 by chemical synthesis, analysis of various degradation products and NMR. D-Fructose-2,6-P2 is the most potent activator of phosphofructokinase and relieves inhibition of the enzyme by ATP and citrate. It lowers the Km for fructose-6-P from 6 mM to 0.1 mM.

Fructose-6-P,2-kinase catalyzes the synthesis of fructose-2,6-P2 from fructose-6-P and ATP, and the enzyme has been partially purified. The degradation of fructose-2,6-P2 is catalyzed by fructose-2,6-bisphosphatase. Thus a metabolic cycle could occur between fructose-6-P and fructose-2,6-P2, which are catalyzed by these two opposing enzymes. The activities of these enzymes can be controlled by phosphorylation. Fructose-6-P,2-kinase is inactivated by phosphorylation catalyzed by either cAMP dependent protein kinase or phosphorylase kinase. The inactive, phospho-fructose-6-P,2-kinase is activated by dephosphorylation catalyzed by phosphorylase phosphatase. On the other hand, fructose-2,6-bisphosphatase is activated by phosphorylation catalyzed by cAMP dependent protein kinase.

Investigation into the hormonal regulation of phosphofructokinase reveals that glucagon stimulates phosphorylation of phosphofructokinase which results in decreased affinity for fructose-2,6-P2, and decreases the fructose-2,6-P2 levels. This decreased level in fructose-2,6-P2 appears to be due to the decreased synthesis by inactivation of fructose-2,6-P2,2-kinase and increased degradation as a result of activation of fructose-2,6-bisphosphatase. Such a reciprocal change in these two enzymes has been demonstrated in the hepatocytes treated by glucagon and epinephrine. The implications of these observations in respect to possible coordinated controls of glycolysis and glycogen metabolism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hofman, E., 1976. in Rev. Physiol. Biochem. Pharma. 75: pp. 1–68 Springer-Verlag, Berlin.

  2. Uyeda, K., 1979. Adv. Enzymol. Relat. Areas Mol. Biol. 48: 193–244.

    Google Scholar 

  3. Uyeda, K., Furuya, E. and Luby, L. J., 1981. J. Biol. Chem. 256: 8394–8399.

    Google Scholar 

  4. Ishibashi, H. and Cottam, G. L., 1978. J. Biol. Chem. 253: 8767–8771.

    Google Scholar 

  5. Berry, M. N. and Friend, D. S., 1969. J. Cell Biol. 43: 506–520.

    Google Scholar 

  6. Ingebretsen, R. R. Jr., and Wagle, S. R., 1972. Biochem. Biophys. Res. Common. 47: 403–410.

    Google Scholar 

  7. Kuwajima, M. and Uyeda, K., 1982. Biochem. Biophys. Res. Commun. 104: 84–88.

    Google Scholar 

  8. Kemp, R. G., 1971. J. Biol. Chem. 246: 245–252.

    Google Scholar 

  9. Massey, T. H. and Deal, W. C. Jr., (1973) J. Biol. Chem. 248: 56–62.

    Google Scholar 

  10. Kono, N. and Uyeda, K., 1974. J. Biol. Chem. 249:1490–1496.

    Google Scholar 

  11. Brand, I. A. and Soling, H. D., 1974. J. Biol. Chem. 249: 7824–7831.

    Google Scholar 

  12. Reinhart, G. D. and Lardy, H. A., 1980. Biochemistry 19: 1477–1484.

    Google Scholar 

  13. Lawson, J. W. R., Guynn, R. W., Cornell, N. and Veech, R. L., 1976. in Gluconeogenesis (Mehlman, M. A. and Hanson, R. eds) pp. 481–512 John Wiley and Sons, New York.

  14. Soball, S. Scholz, R. and Heldt, H. W., 1978. Eur. J. Biochem. 87, 377–390.

    Google Scholar 

  15. Blair, J. B., Cook, D. E. and Lardy, H. A., 1973. J. Biol. Chem. 248: 3601–3607.

    Google Scholar 

  16. Clark, M. D., Kneer, N. M., Bosch, A. L. and Lardy, H. A., 1974. J. Biol. Chem. 249: 5695–5703.

    Google Scholar 

  17. Rognstad, R., 1975. Biochem. Biophys. Res. Commun. 6: 900–904.

    Google Scholar 

  18. Kagimoto, T. and Uyeda, K., 1979. J. Biol. Chem. 254: 5584–5587.

    Google Scholar 

  19. Kagimoto, T. and Uyeda, K., 1980. Arch. Biochem. Biophys. 200:792–799.

    Google Scholar 

  20. Furuya, E. and Uyeda, K., 1980. Proc. Natl. Acad. Sci. USA 77:5861–5864.

    Google Scholar 

  21. Uyeda, K., Furuya, E. and Sherry, A. D., 1981. J. Biol. Chem. 256: 8679–8684.

    Google Scholar 

  22. Dawson, R. M. C. and Clarke, N., 1972. Biochem. J. 121: 113–118.

    Google Scholar 

  23. Van Schaftingen, E., Hue, L. and Hers, H.-G., 1980. Biochem. J. 192: 887–895.

    Google Scholar 

  24. Van Schaftingen, E., Hue, L. and Hers, H.-G., 1980. Biochem. J. 192: 897–901.

    Google Scholar 

  25. Claus, T. H., Schlumpf, J., Pilkis, J., Johnson, R. A. and Pilkis S. J., 1981. Biochem. Biophys. Res. Commun. 98: 359–366.

    Google Scholar 

  26. Van Schaftingen, E. and Hers, H.-G., 1980. Biochem. Biophys. Res. Commun. 96: 1524–1531.

    Google Scholar 

  27. Pilkis, S., El-Maghrabi, M. B., Pilkis, J., Claus, T. H. and Cumming, D. A., 1981. J. Biol. Chem. 256: 3171–3141.

    Google Scholar 

  28. Van Schaftingen, E., and Hers, H.-G., 1981. Eur. J. Biochem. 117: 319–323.

    Google Scholar 

  29. Koerner, T. A. W., Kperner R., Voll, R. J., Cary, L. W. and Younathan, E. S., 1980. Biochemistry 19: 2795–2801.

    Google Scholar 

  30. O'Connor, J. V., Nunez, H. A. and Barker, R., 1979. Biochemistry 18: 500–507.

    Google Scholar 

  31. Hesbain-Frisque, A.-M., Van Schaftingen, E. and Hers, H.G., 1981. Eur. J. Biochem 117, 325–327.

    Google Scholar 

  32. Monod, J., Wyman, J. and Changeaux, J. P., 1965. J. Mol. Biol. 12, 88–118.

    Google Scholar 

  33. Pilkis, S. J., El-Maghrabi, M. R., Pilkis, J. and Claus, T., 1981. J. Biol. Chem. 256: 3619–3622.

    Google Scholar 

  34. Van Schaftingen, E. and Hers, H.-G., 1981. Proc. Natl. Acad. Sci. USA 78: 2861–2863.

    Google Scholar 

  35. Furuya, E. and Uyeda, K., 1981. J. Biol. Chem. 256: 7109–7112.

    Google Scholar 

  36. Furuya, E., Yokoyama, M. and Uyeda, K., 1982. Proc. Natl. Acad. Sci. USA 79: 325–329.

    Google Scholar 

  37. El-Maghrabi, M. R., Claus, T. H., Pilkis, J. and Pilkis, S. J., 1981. Biochem. Biophys. Res. Common. 101: 1071–1077.

    Google Scholar 

  38. Van Schaftingen, E. and Hers, H.-G., 1981. Biochem. Biophys. Res. Common. 101: 1078–1084.

    Google Scholar 

  39. Richards, C. S. and Uyeda, K., 1980. Biochem. Biophys. Res. Common. 97: 1535–1540.

    Google Scholar 

  40. Furuya, E., Yokoyama, M. and Uyeda, K. Biochem. Biophys. Res. Common., 1982, 105: 264–270.

    Google Scholar 

  41. Furuya, E. and Uyeda, K., 1980. J. Biol. Chem. 255: 11656–11659.

    Google Scholar 

  42. Richards, C. S., Yokoyama M., Furuya E. and Uyeda, K. Biochem. Biophys. Res. Commun. 104: 1073–1079.

  43. Van Schaftingen, E., Davies, D. R., and Hers, H. G., 1981. Biochem. Biophys. Res. Commun. 103: 362–368.

    Google Scholar 

  44. El-Maghrabi, M. R., Claus, T. H., Pilkis, J. and Pilkis, S. J., 1982. Proc. Natl. Acad. Sci. USA 79: 315–319.

    Google Scholar 

  45. Steiner, A. L., Parker, C. W. and Kipnis, D. M., 1972. J. Biol. Chem. 247: 1106–1112.

    Google Scholar 

  46. Hue, L., Blackmore, P. F. and Exton, J. H., 1981. J. Biol. Chem. 256: 8900–8903.

    Google Scholar 

  47. Krebs, E. G. and Beavo, J. A., 1979. Ann. Rev. Biochem. 48: 923–959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uyeda, K., Furuya, E., Richards, C.S. et al. Fructose-2,6-P2, chemistry and biological function. Mol Cell Biochem 48, 97–120 (1982). https://doi.org/10.1007/BF00227610

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227610

Keywords

Navigation