Skip to main content
Log in

Nitrate reductase in needles, roots and trunk wood of spruce trees [Picea abies (L.) Karst.]

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

Nitrate reductase (EC 1.6.6.2) activity (NRA), as measured by an in vivo assay, is present in needle leaves and mycorrhizal fine root tips of adult Norway spruce [Picea abies (L.) Karst.] in at least equal amounts on a fresh weight basis, in both adult and 5-year-old trees. NRA could also be demonstrated in trunk wood of deroted trees after fertilization with 5 mM \({\text{NO}}_{{\text{3}}^{\text{ - }} }\), exhibiting a longitudinal profile in the trunk. Inducibility in needles can more efficiently be achieved by NO2 (100 μg·m-3) than by 5 mM nitrate, which is effective only in root-amputated trees. A remarkably high level of needle-NRA in unfertilized trees, which are characterized by a very low level of nitrate in the xylem sap, suggests that NRA in spruce needles may in part be constitutive. Organic-N is a major nitrogen source for the needles even in root-amputated trees, indicating pronounced exchange processes between ray parenchyma and trunk xylem, which in turn are modified by the nitrogen source fed to the trunk stump. Intact trees exhibit a very similar amino acid composition of the xylem sap, regardless of whether \({\text{NO}}_{{\text{3}}^{\text{ - }} }\)or \({\text{NH}}_{{\text{4}}^{\text{ + }} }\)has been fed. The amino acid pattern of the needles is not thrown out of balance by “flooding” with \({\text{NO}}_{{\text{3}}^{\text{ - }} }\)and \({\text{NH}}_{{\text{4}}^{\text{ + }} }\), which occurs in fertilized derooted trees. This indicates a distinct potential for homoeostasis of nitrogen entrance-metabolism (i.e. NRA and glutamine synthetase activity) in the needles. In the ectomycorrhiza/fine root-system (EMC), marked differences in NRA were observed depending on root-tip diameter and along the longitudinal profile of the fine roots. EMC-nitrate reductase is strongly enhanced by \({\text{NO}}_{{\text{3}}^{\text{ - }} }\). Needle-NRA exhibits a circannual rhythm. An early summer maximum is followed by a December minimum. This activity pattern matches well the transitory increase of soluble nitrogen in spring and the total protein maximum in winter. In an indirect way assimilatory NRA may well contribute to nitrogen overfertilization (by consumption of NOX) as one possible cause of the contemporary decline of spruce populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9: 511–519

    CAS  Google Scholar 

  • Barnes RL (1962) Glutamine synthesis and translocation in pine. Plant Physiol 37:323–326

    Article  PubMed  CAS  Google Scholar 

  • Bigg WL, Daniel TW (1978) Effects of nitrate, ammonium and pH on the growth of conifer seedlings and their production of nitrate reductase. Plant Soil 50: 371–385

    Article  CAS  Google Scholar 

  • Bledsoe CS, Zasoski RJ (1983) Effects of ammonium and nitrate on growth and nitrogen uptake by mycorrhizal Douglas-fir seedlings. Plant Soil 71: 445–454

    Article  CAS  Google Scholar 

  • Bokern M, Wray V, Strack D (1991) Phenolic acid conjugates and betacyanin accumulation and activity changes of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum. Planta (in press)

  • Bollard EG (1957) Translocation of organic nitrogen in the xylem. Aust J Biol Sci 10: 292–301

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunetti N, Hageman RH (1976) Comparison of in vivo and in vitro assays of nitrate reductase in wheat (Triticum aestivum L.) seedlings. Plant Physiol 58: 537–583

    Article  Google Scholar 

  • Campbell WH (1988) Nitrate reductase and its role in nitrate assimilation in plants. Physiol Plant 74: 214–219

    Article  CAS  Google Scholar 

  • Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151: 369–374

    Article  PubMed  CAS  Google Scholar 

  • Davies HV, Ross HA (1985) Factors affecting in vivo and in vitro determinations of nitrate reductase activity in potato leaves. J Plant Physiol 119: 1–7

    CAS  Google Scholar 

  • Dickson RE (1989) Carbon and nitrogen allocation in trees. Ann Sci For 46 suppl: 631–647

    Article  Google Scholar 

  • France RC, Reid CPP (1983) Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Can J Bot 61: 964–969

    Article  CAS  Google Scholar 

  • Gebauer G, Stadler J (1990) Nitrate assimilation and nitrate content in different organs of ash trees (Fraxinus excelsior). In: van Beusichem ML (ed) Plant nutrition — physiology and applications. Kluwer Academic, Dordrecht, pp 101–106

    Google Scholar 

  • Gezelius K (1986) Free amino acids and total nitrogen during shoot development in Scots pine seedlings. Physiol Plant 67: 435–441

    Article  CAS  Google Scholar 

  • Givan CV (1980) Aminotransferases in higher plants. In: Miflin BJ (ed) Biochemistry of plants. Amino acids and derivates, vol 5. Academic Press, New York, pp 329–357

    Google Scholar 

  • Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32: 169–204

    Article  CAS  Google Scholar 

  • Heinsdorf D, Krauss HH, Hippeli P (1988) Ernährungs- und bodenkundliche Untersuchungen in Fichtenbeständen des mittleren Thüringer Waldes unter Berücksichtigung der in den letzten Jahren aufgetretenen Umweltbelastungen. Beitr Forstwiss 22: 160–167

    Google Scholar 

  • Horn R, Schulze ED (1989) Ecosystem balance of a healthy and declining Picea abies stand in the Fichtelgebirge. In: Forschungsbeirat Waldschäden/Luftverunreinigungen der Bundesregierung und der Länder. International Congress on Forest Decline Research, Friedrichshafen. Poster abstracts, vol II, pp 290–291

  • Ingestad T (1959) Studies on the nutrition of forest tree seedlings. II. Mineral nutrition of spruce. Physiol Plant 12: 568–593

    Article  Google Scholar 

  • Ingestad T (1979) Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. Physiol Plant 45: 373–380

    Article  CAS  Google Scholar 

  • Klein RM, Perkins TD (1988) Primary and secondary causes and consequences of contemporary forest decline. Bot Rev 54: 1–43

    Article  Google Scholar 

  • Klepper L, Flesher D, Hageman RH (1971) Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol 48: 580–590

    Article  PubMed  CAS  Google Scholar 

  • Krause GHM, Arndt U, Brandt CJ, Bucher J, Kenk G, Matzner E (1986) Forest decline in Europe: development and possible causes. Water Air Soil Pollut 31: 647–668

    Article  Google Scholar 

  • Lee Y-J, Schwartz SE (1981) Reaction kinetics of nitrogen dioxides with liquid water at low partial pressure. J Phys Chem 85: 840–848

    Article  CAS  Google Scholar 

  • Löffel U (1987) Proteinsynthese in Nadeln immissionsgeschädigter und nicht geschädigter Fichten [Picea abies (L.) Karst.]. Schriftliche Hausarbeit im Rahmen der Ersten Staatsprüfung für das Lehramt der Sekundarstufe II, Köln

  • Losada M, Guerrero MG (1979) The photosynthetic reduction of nitrate and its regulation. In: J. Barber (ed) Topics in photosynthesis. Photosynthesis in relation to model systems, vol 3. Elsevier, Oxford, pp 365–408

    Google Scholar 

  • Marschner H, Häusling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5: 14–21

    Article  Google Scholar 

  • Martin F, Chemardin M, Gadal P (1981) Nitrate assimilation and nitrogen circulation in Austrian pine. Physiol Plant 53: 105–110

    Article  CAS  Google Scholar 

  • Mohr M (1990) Der Stickstoff — ein kritisches Element in der Biosphäre. Heidelberger Akademie, Sitzungsberichte Nr 5

  • Nicholas DJD, Nason A (1957) Determination of nitrate and nitrite. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol III. Academic Press, New York, pp 981–984

    Google Scholar 

  • Nihlgard B (1985) The ammonium hypothesis — an additional explanation to the forest dieback in Europe. Ambio 14: 2–8

    Google Scholar 

  • Oren R, Schulze E-D (1989) Nutritional disharmony and forest decline: a conceptual model. Ecol Stud 77: 425–443

    Google Scholar 

  • Pate JS (1975) Exchange of solutes between phloem and xylem and circulation in the whole plant. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology, NS. Transport in plants I, Vol 1. Springer, Berlin Heidelberg New York, pp 451–473

    Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31: 313–340

    Article  CAS  Google Scholar 

  • Pate JS, Atkins CA (1983) Nitrogen uptake and utilization. In: Broughten JS (ed) Nitrogen fixation. Legumes, vol III. Oxford University Press, London, pp 244–298

    Google Scholar 

  • Radin JW (1973) In vivo assay of nitrate reductase in cotton leaf disks. Plant Physiol 51: 332–336

    Article  PubMed  CAS  Google Scholar 

  • Rajasekhar VK, Oelmüller R (1987) Regulation of induction of nitrate reductase and nitrite reductase in higher plants. Physiol Plant 71: 517–521

    Article  CAS  Google Scholar 

  • Remmler JL, Campbell WH (1986) Regulation of corn leaf nitrate reductase. II. Synthesis and turnover of the enzyme's activity and protein. Plant Physiol 80: 442–447

    Article  PubMed  CAS  Google Scholar 

  • Rowland AJ, Drew MC, Wellburn AR (1987) Foliar entry and incorporation of atmospheric nitrogen dioxide into barley plants of different nitrogen status. New Phytol 107: 357–371

    Article  CAS  Google Scholar 

  • Sauter JJ (1976) Analysis of amino acids and amides in the xylem sap of Salix caprea L. in early spring. Z Pflanzenphysiol 79: 276–280

    CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (1984) Lehrbuch der Bodenkunde. 11., neu bearbeitete Auflage. Enke, Stuttgart

    Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) ectomycorrhizal with Hebeloma cylindrosporum Romagn. New Phytol 114: 93–98

    Article  CAS  Google Scholar 

  • Schmidt B (1988) Enzymologische Untersuchungen zur Metabolisierung anorganischen Stickstoffs in gesunden und immissionsgeschädigten Fichten Picea abies (L.) Karst. Diplomarbeit, Köln

    Google Scholar 

  • Schmidt-Vogt H (1989) Die Fichte: ein Handbuch in zwei Bänden. Band II/2 Krankheiten, Schäden, Fichtensterben. Parey, Hamburg

  • Scholl RL, Harper JE, Hageman RH (1974) Improvements of the nitrite colour development in assays of nitrate reductase by phenazine methosulfate and zinc acetate. Plant Physiol 53: 825–828

    Article  PubMed  CAS  Google Scholar 

  • Schulze E-D, Gebauer G (1989) Aufnahme, Abgabe und Umsatz von Stickoxiden, \({\text{NH}}_{{\text{4}}^{\text{ + }} }\)und Nitrat bei Waldbäumen, insbesondere der Fichte. In: 1. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”. GSF-Bericht 6/89

  • Schulze E-D, Lange OL (1990) Die Wirkungen von Luftverunreinigungen auf Waldökosysteme. Chemie in unserer Zeit 24: 117–130

    Article  CAS  Google Scholar 

  • Schulze E-D, Oren R, Lange OL (1989) Processes leading to forest decline: a synthesis. Ecol Stud 77: 459–468

    Google Scholar 

  • Schutt P, Koch W, Blaschke H, Lang KJ, Reigber E, Schuck HJ, Summerer H (1986) So stirbt der Wald, Schadbilder und Krankheitsverlauf. 5. durchgesehene Aufl. BLV, München

  • Smirnoff N, Stewart GR (1985) Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Physiol Plant 64: 133–140

    Article  CAS  Google Scholar 

  • Smirnoff N, Todd P, Stewart GR (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann Bot 54: 363–374

    CAS  Google Scholar 

  • Solomonson LP, Sephar AM (1977) Model for the regulation of nitrate assimilation. Nature 265: 373–375

    Article  CAS  Google Scholar 

  • Spies JR (1957) Colorimetric procedures for amino acids. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol III. Academic Press, New York, pp 467–477

    Chapter  Google Scholar 

  • Stewart GR, Larher — (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin BJ (ed) Biochemistry of plants. Amino acids and derivates, vol 5. Academic Press, New York, pp 609–635

    Google Scholar 

  • Streeter JG, Bosler ME (1972) Comparison of in vitro and in vivo assays for nitrate reductase in soybean leaves. Plant Physiol 49: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Streit L, Harper JE (1986) Biochemical characterisation of soybean mutants lacking constitutive NADH: nitrate reductase. Plant Physiol 81: 539–596

    Article  Google Scholar 

  • Suzuki A, Kohno K (1983) Changes in the nitrogen compounds of xylem sap of mulberry (Morus alba L.) during regrowth after pruning. Ann Bot 51: 441–448

    CAS  Google Scholar 

  • TEMES-Jahresbericht (1990) Ergebnisse aus dem telemetrischen Emissionsmeßnetz in Nordrhein-Westfalen. LIS (Landesanstalt für Emissionsschutz des Landes NRW)

  • Timpo EE, Neyra CA (1983) Expression of nitrate and nitrite reductase activities under various forms of nitrogen nutrition of Phaseolus vulgaris L. Plant Physiol 72: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Tischner R, Peuke A, Godbold DL, Feig R, Merg G, Hüttermann A (1988) The effect of NO2-fumigation on aseptically grown spruce seedlings. J Plant Physiol 133: 243–246

    CAS  Google Scholar 

  • Tromp J, Ovaa JC (1976) Effect of nitrogen application on aminonitrogen composition of roots and xylem sap of apple. Physiol Plant 37: 29–34

    Article  CAS  Google Scholar 

  • Van den Driessche R (1971) Response of conifer seedlings to nitrate and ammonium sources of nitrogen. Plant Soil 34: 421–439

    Article  Google Scholar 

  • Vezina L-P, Margolis HA, Ouimet R (1988) The activity, characterisation and distribution of the nitrogen assimilation enzyme, glutamine synthetase, in jack pine seedlings. Tree Physiol 4: 109–118

    PubMed  CAS  Google Scholar 

  • Vezina L-P, Margolis HA, McAfee BJ, Delaney S (1989) Changes in the activity of enzymes involved with primary nitrogen metabolism due to ectomycorrhizal symbiosis on jack pine seedlings. Physiol Plant 75: 55–62

    Article  CAS  Google Scholar 

  • Ward MR, Grimes HD, Huffaker RC (1989) Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta 177: 470–475

    Article  PubMed  CAS  Google Scholar 

  • Weber P (1989) Untersuchungen zum Stickstoffmetabolismus der Fichte: Enzymaktivitäten und Proteinsynthesearten gesunder und geschädigter Picea abies Bestände. Diplomarbeit, Köln

    Google Scholar 

  • Weidner M, Kiefer H (1981) Nitrate reduction in the marine alga Giffordia mitchellinae (Harv.) Harn. Z Pflanzenphysiol 104: 341–351

    CAS  Google Scholar 

  • Weidner M, Kraus M (1987) Ribulose-1,5-bisphosphate carboxylase activity and influence of air pollution in spruce. Physiol Plant 70: 624–627

    Article  Google Scholar 

  • Weidner M, Engel B, Kraus M, Löffel U, Schmidt B (1989) Pflanzenphysiologische und enzymologische Untersuchungen an gesunden und geschädigten Fichten in Nordrhein-Westfalen. I. Ribulose-1,5-bisphosphat Carboxylase, Glutaminsynthetase, Nitratreduktase und in vivo Proteinsynthese(= 14C-Leucineinbau-) Rate in Fichtennadeln. Forschungsbericht MURL (NRW), Nr 4

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115: 395–429

    Article  CAS  Google Scholar 

  • Wingsle G, Näsholm T, Lundmark A, Ericsson (1987) Induction of nitrate reductase in needles of Scots pine seedlings by NOx and \({\text{NO}}_{{\text{3}}^{\text{ - }} }\). Physiol Plant 70: 399–403

    Article  CAS  Google Scholar 

  • Yoneyama T, Sasakawa H (1979) Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol 20: 263–266

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Strack, D. & Weidner, M. Nitrate reductase in needles, roots and trunk wood of spruce trees [Picea abies (L.) Karst.]. Trees 5, 215–226 (1991). https://doi.org/10.1007/BF00227528

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227528

Key words

Navigation