, Volume 5, Issue 4, pp 187–195 | Cite as

Food reserves of Scots pine (Pinus sylvestris L.)

I. Seasonal changes in the carbohydrate and fat reserves of pine needles
  • Christine Fischer
  • Wolfgang Höll
Original Articles


The amounts of starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were studied in Scots pine (Pinus sylvestris L.) during an annual cycle in current-year needles and in 1-, 2- and 3-year-old needles collected shortly after bud break. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. Newly emerging needles contained relatively large amounts of starch, but only trace amounts of fat. During autumn and winter, fat content rose, while starch content decreased; amounts of both these reserve materials were very high the next spring shortly before bud break and decreased again during shoot elongation. Concentration of intermediates in triacylglycerol biosynthesis (diacylglycerols and free fatty acids), were low in summer and high in winter. The same pattern was observed for fructose and glucose (the predominant soluble sugars), galactose/arabinose and raffinose/melibiose. In contrast, sucrose concentrations were highest in spring and in autumn. Mature needles of different ages collected in May showed significant differences only in their triacylglycerol and starch content. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance and the possibility of carbohydrate-fat interconversions.

Key words

Food reserves Pinus sylvestris Starch Sugars Triacylglycerol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberdi M, Meza-Basso L, Fernandes J, Rios D (1989) Seasonal changes in carbohydrate content and frost resistance of leaves of Nothofagus species. Phytochemistry 28: 759–763CrossRefGoogle Scholar
  2. Bernard-Dagan C (1988) Les substances de reserve du Pin maritime: role eventuel des metabolites secondaires. Bull Soc Bot Fr 135: 25–40Google Scholar
  3. Beutler HO (1985a) Starch. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 3–10Google Scholar
  4. Beutler HO (1985b) Raffinose. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 90–95Google Scholar
  5. Beutler HO (1985c) D-Fructose. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 321–327Google Scholar
  6. Bonicel A, Vercose de Medeiros, Rapose N (1990) Variation of starch and soluble sugars in selected sections of poplar buds during dormancy and post-dormancy. Plant Physiol Biochem 28: 577–586Google Scholar
  7. Bonicel A, Haddard G, Gagnaire J (1987) Seasonal variations of starch and major soluble sugars in the different organs of young poplars. Plant Physiol Biochem 25: 451–459Google Scholar
  8. Caffrey M, Fonseca V, Leopold AC (1988) Lipid sugar interactions. Plant Physiol 86: 754–758PubMedCrossRefGoogle Scholar
  9. Chen Y, Burris JS (1990) Role of carbohydrates in desiccation tolerance and membrane behaviour in maturing maize seeds. Crop Sci 30: 971–975CrossRefGoogle Scholar
  10. De Stefanis VA, Ponte JG (1968) Separation of sugars by thin layer chromatography. J Chromatogr 34: 116–120CrossRefGoogle Scholar
  11. Fischer A (1891) Beiträge zur Physiologie der Holzgewächse. Jahrb Wiss Bot 22: 73–160Google Scholar
  12. Gordon JC, Larson PR (1968) Seasonal course of photosynthesis, respiration, and distribution of 14C in young Pinus resinosa trees as related to wood formation. Plant Physiol 43: 1617–1624PubMedCrossRefGoogle Scholar
  13. Hansen J, Beck E (1990) The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4: 16–21CrossRefGoogle Scholar
  14. Hjelm M, Verdier C-H de (1985) D-Galactose. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 281–296Google Scholar
  15. Höll W (1981) Eine dünnschichtchromatographische Darstellung des Jahresgangs löslicher Zucker im Stammholz von drei Angiospermen und einer Gymnosperme. Holzforschung 35: 173–175CrossRefGoogle Scholar
  16. Höll W (1985) Seasonal fluctuation of reserve materials in the trunkwood of spruce [Picea abies (L.) Karst. J Plant Physiol 117: 355–362Google Scholar
  17. Höll W, Priebe S (1985) Storage lipids in the trunk- and rootwood of Tilia cordata Mill, from the dormant to the growing period. Holzforschung 39: 7–10CrossRefGoogle Scholar
  18. Jeremias K (1968a) Zum Verhalten einiger Kohlenhydrate in Blättern und Rinden der Pappelsorten Oxford, Rochester und Androscoggin. Mitt Ver Forstl Standortskd Forstpflanzenzüchtung 18: 89–94Google Scholar
  19. Jeremias K (1968b) Die Veränderungen des Fettgehalts in den Rinden der Pappelsorten Oxford, Rochester und Androscoggin im Verlaufe eines Jahres. Mitt Ver Forstl Standortskd Forstpflanzenzüchtung 18: 95–97Google Scholar
  20. Kandler O, Hopf H (1980) Occurrence, metabolism, and function of oligosaccharides. In: Preiss J (ed) The biochemistry of plants. vol 3. Academic Press, New York, pp 221–270Google Scholar
  21. Kandler O, Dover C, Ziegler P (1979) Kälteresistenz der Fichte. I. Steuerung von Kälteresistenz, Kohlenhydrat- und Proteinstoff-wechsel durch Photoperiode und Temperatur. Ber Dtsch Bot Ges 92: 225–241Google Scholar
  22. Kates M (1972) Techniques in lipidology. North-Holland, AmsterdamGoogle Scholar
  23. Kozlowski TT, Keller T (1966) Food relations in woody plants. Bot Rev 32: 293–382CrossRefGoogle Scholar
  24. Kunst A, Draeger B, Ziegenhorn J (1985) D-Glucose. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 163–172Google Scholar
  25. Little CHA (1970a) Derivation of the springtime starch increase in balsam fir (Abies balsamea). Can J Bot 48: 1995–1999CrossRefGoogle Scholar
  26. Little CHA (1970b) Seasonal changes in carbohydrate and moisture content in needles of balsam fir (Abies balsamea). Can J Bot 48: 2021–2028CrossRefGoogle Scholar
  27. Mangold HK, Malins DC (1960) Fractionation of fats, oils and waxes on thin layers of silicic acid. J Am Oil Chem Soc 37: 383–385CrossRefGoogle Scholar
  28. Martin B, Öquist G (1979) Seasonal and experimentally induced changes in the ultrastructure of chloroplasts of Pinus sylvestris. Physiol Plant 46: 42–49CrossRefGoogle Scholar
  29. Nägele U, Wahlefeld A-W, Ziegenhorn J (1985) Triglycerides. In: Bergmeyer H-U (ed) Methods of enzymatic analysis. vol VIII, VCH, Weinheim, pp 2–12Google Scholar
  30. Outlaw WH, Tarczynski MC (1985) Sucrose. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, vol VI. VCH, Weinheim, pp 96–104Google Scholar
  31. Pomeroy MK, Siminovitch D, Wightman F (1970) Seasonal biochemical changes in living bark and needles of red pine (Pinus resinosa) in relation to adaption to freezing. Can J Bot 48: 953–967CrossRefGoogle Scholar
  32. Saranpää P, Nyberg H (1987) Seasonal variation of neutral lipids in Pinus sylvestris L. sapwood and heartwood. Trees 1: 139–144Google Scholar
  33. Sauter JJ (1980) Seasonal variation of sucrose content in the xylem sap of Salix. Z Pflanzenphysiol 98: 377–391Google Scholar
  34. Sauter JJ (1988) Temperature-induced changes in starch and sugars in the stern of Populus x canadensis “robusta”. J Plant Physiol 132: 608–612Google Scholar
  35. Senser M, Beck E (1979) Kälteresistenz der Fichte. II. Einfluß von Photoperiode und Temperatur auf die Struktur und photochemischen Reaktionen von Chloroplasten. Ber Dtsch Bot Ges 92: 243–259Google Scholar
  36. Senser M, Dittrich P, Kandler O, Thanbichler A, Kuhn B (1971) Isotopenstudien über den Einfluß der Jahreszeit auf den Oligosac-charidumsatz bei Coniferen. Ber Dtsch Bot Ges 48: 445–455Google Scholar
  37. Siminovitch D, Wilson CM, Briggs DR (1953) Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. V. Seasonal transformations and variations in the carbohydrates: starch-sucrose interconversions. Plant Physiol 28: 383–400PubMedCrossRefGoogle Scholar
  38. Sinnott EW (1918) Factors determining character and distribution of food reserves in woody plants. Bot Gaz 66: 162–175CrossRefGoogle Scholar
  39. Troeng E, Linder S (1982) Gas exchange in an 20-year-old stand of Scots pine. Physiol Plant 54: 7–14CrossRefGoogle Scholar
  40. Tsel'niker YUL, Chetverikov AG (1988) Dynamics of chlorophyll content and amounts of reaction centres of photosystems 1 and 2 in Pinus sylvestris L. and Picea abies Karst, needles. Photosynthetica 22: 483–490Google Scholar
  41. Ungerson J, Scherdin G (1965) Untersuchungen über Photosynthese und Atmung unter natürlichen Bedingungen während des Winterhalb-jahres bei Pinus silvestris L., Picea excelsa Link. und Juniperus communis L. Planta 67: 136–167CrossRefGoogle Scholar
  42. Ursino DJ, Paul J (1973) The long-term fate and distribution of 14C photoassimilated by young white pines in late summer. Can J Bot 51: 683–687CrossRefGoogle Scholar
  43. Ursino DJ, Nelson DC, Krotlov G (1968) Seasonal changes in the distribution of photo-assimilated 14C in young pine plants. Plant Physiol 43: 845–852PubMedCrossRefGoogle Scholar
  44. Yoshioka H, Nagai K, Aoba K, Fukumoto M (1988) Seasonal changes of carbohydrates metabolism in apple trees. Sci Hortic 36: 219–227CrossRefGoogle Scholar
  45. Ziegler H (1964) Storage, mobilization and distribution of reserve material in trees. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, London, 303–320Google Scholar
  46. Zimmermann MH, Brown CL (1971) Trees, structure and function. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Christine Fischer
    • 1
  • Wolfgang Höll
    • 1
  1. 1.Institut für Botanik und Mikrobiologie, Technische Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations