Skip to main content
Log in

Simple test statistics for major gene detection: a numerical comparison

  • Originals
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

We compare 22 simple tests for the detection of major gene segregation in livestock populations. These tests belong to two groups: methods based on the comparison of within-family distribution and methods based on the comparison of parents' and offspring performances. The power of the 22 tests and the robustness of the two more powerful of these 22 are evaluated by simulation. Thirteen types of major loci, differing in the within-genotype means, variances or alleles frequencies, are studied. Thirty hierarchically balanced populations defined by the number of sire families (5–20), dams per sire (1–20) and progenies per dam (1–20) are simulated. The quantiles are estimated from 2000 samples, the power from 1000 samples and the robustness from 100 samples. The more powerful tests are the within family-variance heterogenity test (Bartlett test) and the within-family mean-variance regression (Fain 1978). Their robustness may be very low, in particular when the trait distribution is skewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett MS (1937) Som examples of statistical methods of research in agriculture and applied biology. J R Soc [Suppl] 4:137–170

    Google Scholar 

  • Bodin L, Elsen JM (1989) Viability of litter size of French sheep breeds following natural or induced ovulation. Anim Prod 48:534–541

    Google Scholar 

  • Carmelli D, Karlin S, Williams R (1979) A class of indices to assess major gene versus polygenic inheritance of distributed variables. In: Sing CF, Skolnick M (eds) The genetic analysis of common diseases: applications to predictive factors in coronary heart disease. Alan R. Liss, New York, pp 259–270

    Google Scholar 

  • Demenais F, Lathrop M, Lalouel JM (1986) Robustness and power of the unified model in the analysis of quantitative measurements. Am J Hum Genet 38:228–234

    Google Scholar 

  • El Amraoui A, Goffinet B (1991) Estimation of the density of G given observations of Y = G + E. Biom J 33:3:347–355

    Google Scholar 

  • Fain PR (1978) Characteristics of simple sibship variance tests for the detection of major loci and application to height, weight and spatial performance. Ann Hum Genet 42:109–120

    Google Scholar 

  • Fain PR, Ott J (1976) Heterogeneity of within sibship variance as a test of the major gene hypothesis. In: Vth Int CongrHum Genet Excerpta Med Int Congr Ser 397:180 (Summary)

    Google Scholar 

  • Famula TR (1986) Identifying single genes of large effect in quantitative traits using best linear unbiased prediction. J Anim Sci 63:68–76

    Google Scholar 

  • Hammond K, James JW (1970) Genes of large effect and the shape of the distribution of a quantitative character. Aust J Biol Sci 23:867–876

    Google Scholar 

  • Hanset R, Michaux C (1985a) On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed. I. Experimental data. Génét Sél Evol 17:359–368

    Google Scholar 

  • Hanset R, Michaux C (1985b) On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed. II. Population data. Génét Sél Evol 17:369–386

    Google Scholar 

  • Harrel FE, Davis CE (1982) A new distribution-free quantile estimator. Biometrika 69–635–640

    Google Scholar 

  • Hoeschele I (1988) Statistical techniques for detection of major genes in animal breeding data. Theor Appl Genet 76:311–319

    Google Scholar 

  • Kammerer CM, MacCluer JW, Bridges JM (1984) An evaluation of three statistics of Structured Exploratory Data Analysis. Am J Hum Genet 36:187–196

    Google Scholar 

  • Karlin S, Williams PT (1981) Structured Exploratory Data Analysis (SEDA) for determining mode of inheritance of quantitative traits. II. Simulation studies on the effect of ascertaining families through high-valued probands. Am J Hum Genet 33:282–292

    Google Scholar 

  • Karlin S, Carmelli D, Williams R (1979) Index measures for assessing the mode of inheritance of continuously distributed traits. I. Theory and justifications. Theor Popul Biol 16:81–106

    Google Scholar 

  • Karlin S, Williams PT, Carmelli (1981) Structured Exploratory Data Analysis (SEDA) for determining mode of inheritance of quantitative traits. I. Simulation studies on the effect of background distributions. Am J Hum Genet 33:262–281

    Google Scholar 

  • Le Roy P, Naveau J, Elsen JM, Sellier P (1990) Evidence for a new major gene influencing meat quality in pigs. Genet Res 55:33–40

    Google Scholar 

  • MacCluer JW, Kammerer CM (1984) Power of sibship variance tests to detect major genes. In: Chakravarti A (ed) Human population genetics: the Pittsburgh symposium. Van Nostrand, New York, pp 125–141

    Google Scholar 

  • MacLean CJ, Morton NE, Elston RC, Yee S (1976) Skewness in comingled distributions. Biometrics 32:695–699

    Google Scholar 

  • Mayo O (1989) Identification of genes which influence quantitative traits. In: Hill WG, Mackay TFC (eds) Evolution and animal breeding. Reviews on molecular and quantitative approaches in honour of Alan Robertson. Wallingford, CAB Int, pp 141–146

    Google Scholar 

  • Mayo O, Hancock TW, Baghurst PA (1980) Influence of major genes on variance within sibships for a quantitative trait. Ann Hum Genet 43:419–421

    Google Scholar 

  • Mayo O, Eckert SR, Nugroho WH (1982) Models of gene effects for a quantitative trait in man. In: Malhotra KC, Amitabha Basu (eds) Proc Indian Stat Inst Golden Jubilee Conf. Hum Genet and Adapt, Vol 1. pp 479–489

  • Mayo O, Eckert SR, Nugroho WH (1983) Properties of the Major Gene Index and related functions. Hum Hered 33:205–212

    Google Scholar 

  • Mérat P (1968) Distributions de fréquences, interprétration du déterminisme génétique des caracteres quantitatifs et recherche de “gènes majeurs”. Biometrics 24:277–293

    Google Scholar 

  • Mérat P (1971) Distributions de fréquences, interprétation du déterminisme génétique des caracteres quantitatifs et recherche de “gènes majeurs”: données expérimentales. Ann Génét Sél Anim 3:281–293

    Google Scholar 

  • Mérat P, Ricard FH (1974) Etude d'un gène de nanisme lié au sexe chez la poule: importance de l'état d'engraissement et gain de poids chez l'adulte. Ann Génét Sél Anim 6:211–217

    Google Scholar 

  • Morton NE, Williams WR, Lew R (1982) Trials of structured exploratory data analysis. Am J Hum Genet 34:489–500

    Google Scholar 

  • Morton NE, Gulbrandsen CL, Rhoads GG, Kagan A, Lew R (1978) Major loci for lipoprotein concentrations. Am J Hum Genet 30:583–589

    Google Scholar 

  • Ollivier L (1968) Etude du déterminisme héréditaire de l'hypertrophie musculaire du porc de Piétrain. Ann Zootech 17:393–407

    Google Scholar 

  • Ollivier L (1980) Le déterminisme génétique de l'hypertrophie musculaire chez le porc. Ann Génét Sél Anim 12:383–394

    Google Scholar 

  • Piper LR, Bindon BM (1982) The Booroola Merino and the performance of medium non-peppin crosses at Armidale. In: Piper LR, Bindon BM, Nethery RD (eds) The Booroola Merino. CSIRO, Melbourne, pp 9–20

    Google Scholar 

  • Piper LR, Shrimpton AE (1989) The quantitative effects of genes which influence metrics traits. In: Hill WG, Mackay TFC (eds) Evolution and animal breeding. Reviews on molecular and quantitative approaches in honour of Alan Robertson. Wallingford, CAB Int, pp 147–151

    Google Scholar 

  • Ricordeau G, Bouillon J, Le Roy P, Elsen JM (1990) Déterminisme génétique du débit de lait au cours de la traite de chèvres. INRA Prod Anim 3:2:121–126

    Google Scholar 

  • Spielman RS, Harris H, Mellman WJ, Gershowitz H (1978) Dissection of a continuous distribution: red cell galactokinase activity in blacks. Am J Hum Genet 30:237–248

    Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. John Wiley and Sons, New York

    Google Scholar 

  • Woolaston RR, Gray GD, Albers GAA, Piper LR, Barker JSF (1990) Analysis for a major gene affecting parasite resistance in sheep. In: Proc 4th World Cong Genet Appl to Livestock Prod, Vol 15. Edinburgh, pp 131–134

    Google Scholar 

  • Young RS, Reed T, Norton JA, Christian JC (1981) Application of the Major Gene Index and Offspring Between Parents function to dermatoglyphic fingertip variables. Am J Hum Genet 33:432–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. J. Eisen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roy, P., Elsen, J.M. Simple test statistics for major gene detection: a numerical comparison. Theoret. Appl. Genetics 83, 635–644 (1992). https://doi.org/10.1007/BF00226909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226909

Key words

Navigation