Skip to main content
Log in

Mechanism of liver glucokinase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Glucokinase is the enzyme primarily responsible for the phosphorylation of glucose in the livers of mammals and other vertebrates. It differs from the other hexokinases in being insensitive to inhibition by glucose 6-phosphate and in responding co-operatively to changes in the glucose concentration in the physiological range. These properties accord well with the presumed function of glucose phosphorylation in the liver as a means of controlling the blood-glucose concentration. Glucokinase has the unusual property for a co-operative enzyme of being a monomeric enzyme with a single active site. The co-operativity consequently requires a purely kinetic explanation and cannot be explained by analogy with subunit interactions in proteins that display co-operativity in equilibrium binding. The behaviour is consistent with a ‘mnemonical’ type of mechanism, i.e. one in which the co-operativity derives from the occurrence of two interconvertible forms of free enzyme that are not at equilibrium in the steady state. As co-operativity is observed only with glucose and not with the other substrate, MgATP2−, a corollary of this interpretation is that glucose must bind predominantly or exclusively before MgATP2−. This order of binding is supported by isotope-exchange measurements, though the alternative order also appears to be possible as a minor route of reaction. Stereochemical investigations reveal that glucokinase resembles other hexokinases in that the form of MgATP2− that reacts with the enzyme is the βγ-bidentate complex with the Λ-screw sense, and that the reaction proceeds with inversion of configuration at phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahill, G. F., Jr., Hastings, A. B., Ashmore, J. & Zottu, S., 1958. J. Biol. Chem. 230: 125–135.

    Google Scholar 

  2. Hanson, T. L. & Fromm, H. J., 1965. J. Biol. Chem. 240: 4133–4139.

    Google Scholar 

  3. Copley, M. & Fromm, H. J., 1967. Biochemistry 6: 3503–3509.

    Google Scholar 

  4. Bachelard, H. S., Clark, A. G. & Thompson, M. F., 1971. Biochem. J. 123: 707–715.

    Google Scholar 

  5. Storer, A. C. & Cornish-Bowden, A., 1976. Biochem. J. 159: 7–14.

    Google Scholar 

  6. Walker, D. G., 1962. Biochem. J. 84: 118P-119P.

    Google Scholar 

  7. DiPietro, D. L., Sharma, C. & Weinhouse, S., 1962. Biochemistry 1: 455–462.

    Google Scholar 

  8. Viñuela, E., Salas, M. & Sols, A., 1963. J. Biol. Chem. 238: PC1175-PC1177.

    Google Scholar 

  9. Parry, M. J. & Walker, D. G., 1966. Biochem. J. 99: 266–274.

    Google Scholar 

  10. Bernard, C., 1848. Arch. Gen. Med. (4th Ser.) 18: 303–319.

    Google Scholar 

  11. Bernard, C., 1855. C. R. Acad. Sci. Set. D 41: 461–469.

    Google Scholar 

  12. DiPietro, D. L. & Weinhouse, S., 1960. J. Biol. Chem. 235: 2542–2545.

    Google Scholar 

  13. Salas, J., Salas, M., Vifiuela, E. & Sols, A., 1965. J. Biol. Chem. 240: 1014–1018.

    Google Scholar 

  14. Walker, D. G. & Rao, S., 1964. Biochem. J. 90: 360–368.

    Google Scholar 

  15. Holroyde, M. J. & Trayer, I. P., 1974. Biochem. Soc. Trans. 2: 1310–1311.

    Google Scholar 

  16. Holroyde, M. J., Chesher, J. M. E., Trayer, I. P. & Walker, D. G., 1976. Biochem. J. 153: 351–361.

    Google Scholar 

  17. Holroyde, M. J., Allen, M. B., Storer, A. C., Warsy, A. S., Chesher, J. M. E., Trayer, I. P., Cornish-Bowden, A. & Walker, D. G., 1976. Biochem. J. 153: 363–373.

    Google Scholar 

  18. Niemeyer, H., Ureta, T. & Clark-Turri, L., 1975. Mol. Cell. Biochem. 6: 109–126.

    Google Scholar 

  19. Ureta, T., Radcjković, J., Lagos, R., Guixé, V. & Nuñez, L., 1979. Arch. Biol. Med. Exper. 12: 587–604.

    Google Scholar 

  20. Bock, R. M., 1960. In: The Enzymes (2nd edn), vol. 2, pp. 3–38. Academic Press, New York.

    Google Scholar 

  21. Storer, A. C. & Cornish-Bowden, A., 1977. Biochem. J. 165: 61–69.

    Google Scholar 

  22. Grossbard, L. & Schimke, R. T., 1966. J. Biol. Chem. 241: 3546–3560.

    Google Scholar 

  23. Hue, L. & Hers, H.-G., 1974. Biochem. Biophys. Res. Comm. 58: 540–548.

    Google Scholar 

  24. Katzen, H. M. & Schimke, R. T., 1965. Proc. Natl. Acad. Sci. U.S. 54: 1218–1225.

    Google Scholar 

  25. Pilkis, S. J., 1972. Arch. Biochem. Biophys. 149: 349–360.

    Google Scholar 

  26. Wright, C. L., Warsy, A. S., Holroyde, M. J. & Trayer, I. P., 1978. Biochem. J. 175: 125–135.

    Google Scholar 

  27. Chou, A. C. & Wilson, J. E., 1972. Arch. Biochem. Biophys. 151: 48–55.

    Google Scholar 

  28. Easterby, J. S. & O'Brien, M. J., 1973. Eur. J. Biochem. 38: 201–211.

    Google Scholar 

  29. González, C., Ureta, T., Babul, J., Rabajille, E. & Niemeyer, H., 1967. Biochemistry 6: 460–468.

    Google Scholar 

  30. Niemeyer, H., Cárdenas, M. L., Rabajille, E., Ureta, T., Clark-Turri, L. & Peñaranda, J., 1975. Enzyme 20: 321–333.

    Google Scholar 

  31. Cárdenas, M. L., Rabajille, E. & Niemeyer, H., 1979. Arch. Biol. Med. Exper. 12: 571–580.

    Google Scholar 

  32. Bontemps, F., Hue, L. & Hers, H.-G., 1978. Biochem. J. 174: 603–611.

    Google Scholar 

  33. Connolly, B. A., 1979. Ph.D. Thesis, University of Birmingham.

  34. Cárdenas, M. L., Rabajille, E. & Niemeyer, H., 1978. Arch. Biochem. Biophys. 190: 142–148.

    Google Scholar 

  35. Nichol, L. W., Jackson, W. J. H. & Winzor, D. J., 1967. Biochemistry 6: 2449–2456.

    Google Scholar 

  36. Frieden, C., 1967. J. Biol. Chem. 242: 4045–4052.

    Google Scholar 

  37. Monod, J., Wyman, J. & Changeux, J.-P., 1965. J. Mol. Biol. 12: 88–118.

    Google Scholar 

  38. Koshland, D. E., Jr., Némethy, D. & Filmer, D., 1966. Biochemistry 5: 365–385.

    Google Scholar 

  39. Cornish-Bowden, A., 1977. J. Theor. Biol. 65: 735–742.

    Google Scholar 

  40. Connolly, B. A. & Trayer, I. P., 1979. Eur. J. Biochem. 99: 299–308.

    Google Scholar 

  41. Ferdinand, W., 1966. Biochem. J. 98: 278–283.

    Google Scholar 

  42. Rabin, B. R., 1967. Biochem. J. 102: 22C-23C.

    Google Scholar 

  43. Griffin, C. C. & Brand, L., 1968. Arch. Biochem. Biophys. 126: 856–863.

    Google Scholar 

  44. Sweeny, J. R. & Fisher, J. R., 1968. Biochemistry 7: 561–565.

    Google Scholar 

  45. Ricard, J., Meunier, J.-C. & Buc, J., 1974. Eur. J. Biochem. 49: 195–208.

    Google Scholar 

  46. Meunier, J.-C., Buc, J., Navarro, A. & Ricard, J., 1974. Eur. J. Biochem. 49: 209–223.

    Google Scholar 

  47. King, E. L. & Altman, C., 1956. J. Phys. Chem. 60: 1375–1378.

    Google Scholar 

  48. Cornish-Bowden, A., 1979. In: Fundamentals of Enzyme Kinetics, pp. 69–71. Butterworths, London.

    Google Scholar 

  49. Gregoriou, M., Trayer, I. P. & Cornish-Bowden, A., 1981. Biochemistry 20: 499–506.

    Google Scholar 

  50. Hass, L. F. & Byrne, W. L., 1960. J. Amer. Chem. Soc. 82: 947–954.

    Google Scholar 

  51. Britton, H. G., 1966. Arch. Biochem. Biophys. 117: 167–183.

    Google Scholar 

  52. Cornish-Bowden, A. & Gregoriou, M., 1981. Trends Biochem. Sci. 6: 149–150.

    Google Scholar 

  53. Casazza, J. P. & Fromm, H. J., 1976. Arch. Biochem. Biophys. 177: 480–487.

    Google Scholar 

  54. Theorell, H. & Chance, B., 1951. Acta Chem. Scand. 5: 1127–1144.

    Google Scholar 

  55. Connolly, B. A. & Trayer, I. P., 1979. Eur. J. Biochem. 93: 375–385.

    Google Scholar 

  56. Kenkare, U. W. & Swarup, G., 1978. Fed. Proc. Fed. Amer. Soc. Exper. Biol. 37: 1311.

    Google Scholar 

  57. Otieno, S., Bhargava, A. K., Serelis, D. & Barnard, E. A., 1977. Biochemistry 16: 4249–4255.

    Google Scholar 

  58. Darby, M. K., Connolly, B. A. & Trayer, I. P., 1981. Arch. Biol. Med. Exper. (in press).

  59. Darby, M. K. & Trayer, I. P., 1981. Biochem. Soc. Trans. 9: 158P.

    Google Scholar 

  60. Eckstein, F. & Goody, R. S., 1976. Biochemistry 15: 1685–1691.

    Google Scholar 

  61. Jaffe, E. K. & Cohn, M., 1979. J. Biol. Chem. 254: 10839–10845.

    Google Scholar 

  62. Lowe, G. & Sproat, B. S., 1978. J. Chem. Soc. Perkin I, 1622–1630.

    Google Scholar 

  63. Cullis, P. M. & Lowe, G., 1978. J. Chem. Soc. Chem. Comm., 512–514.

  64. Cullis, P. M. & Lowe, G., 1981. J. Chem. Soc. Perkin I, 2317–2321.

    Google Scholar 

  65. Jarvest, R. L., Lowe, G. & Potter, B. V. L., 1981. J. Chem. Soc. Perkin I, 3186–3195.

    Google Scholar 

  66. Lowe, G. & Potter, B. V. L., 1981. Biochem. J. 199: 227–233.

    Google Scholar 

  67. Pollard-Knight, D., Potter, B. V. L., Cullis, P. M., Lowe, G. & Cornish-Bowden, A., 1982. Biochem. J. 201: 421–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard-Knight, D., Cornish-Bowden, A. Mechanism of liver glucokinase. Mol Cell Biochem 44, 71–80 (1982). https://doi.org/10.1007/BF00226892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226892

Keywords

Navigation