Field-dependent changeover from current-to voltage-limiting characteristics by non-linear n-type BaTiO3 ceramics

  • V. Ravi
  • T. R. N. Kutty
Papers

Abstract

Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (Tc) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. SABURI, and K. WAKINO, IEEE Trans. (Com. parts) 10 (1963) 53.Google Scholar
  2. 2.
    Y. TING, IEEE Trans. Industr. Appl. 8 (1972) 338.Google Scholar
  3. 3.
    T. R. N. KUTTY, and V. RAVI, J. Mater. Sci.: Mater. Electron. 2 (1991) 79.Google Scholar
  4. 4.
    V. RAVI, and T. R. N. KUTTY, J. Appl. Phys. 68 (1990) 4891.Google Scholar
  5. 5.
    T. R. N. KUTTY, and V. RAVI, Appl. Phys, Lett. 59 (1991) 2691.Google Scholar
  6. 6.
    N. YAMAOKA, M. MASUYAMA, and M. FUKUI, Ceram. Bull. 62 (1983) 698.Google Scholar
  7. 7.
    N. YAMAOKA, ibid. Ceram. Bull. 65 (1986) 1149.Google Scholar
  8. 8.
    M. FUJIMOTO, and W. D. KINGERY, J. Amer. Ceram. Soc. 68 (1985) 169.Google Scholar
  9. 9.
    R. WERNICKE, Adv. Ceram. 1 (1981) 272.Google Scholar
  10. 10.
    Y. NAKANO, and N. ICHINOSE, J. Mater. Res. 5 (1990) 2910.Google Scholar
  11. 11.
    V. RAVI, and T. R. N. KUTTY, Mater. Sci. Engng B10 (1991) 41.Google Scholar
  12. 12.
    H. S. GOPALAKRISHNAMURTHY, M. SUBBARAO, and T. R. N. KUTTY, J. Inorg. Nucl. Chem. 37 (1975) 891.Google Scholar
  13. 13.
    Y. MATSUO, and H. SASAKI, J. Amer. Ceram. Soc. 54 (1971) 471.Google Scholar
  14. 14.
    N. S. GAJBHIYE, and T. R. N. KUTTY, Bull. J. Electrochem. Soc. 2 (1986) 231.Google Scholar
  15. 15.
    B. JAFFE, W. R. COOK, and H. JAFFE, Piezeoelectric Ceramics (Academic, New York, 1972) pp. 92–98.Google Scholar
  16. 16.
    T. R. N. KUTTY, P. MURAGARAJ, and N. S. GAJBHIYE, Mater. Lett. 2 (1984) 391.Google Scholar
  17. 17.
    T. R. N. KUTTY, and L. Gomathi DEVI, Mater. Res. Bull. 20 (1985) 793.Google Scholar
  18. 18.
    A. SMOLENSKY, J. Phy. Soc. Jpn 28 (Suppl.) (1970) 26.Google Scholar
  19. 19.
    D. HENNINGS, A. SCHNELL, and G. SIMON, J. Amer. Ceram. Soc. 65 (1982) 539.Google Scholar
  20. 20.
    A. J. BURGGRAAF, and K. KEIZER Mater. Res. Bull. 10 (1975) 521.Google Scholar
  21. 21.
    H. T. MARTIREN, and J. C. BURFOOT, J. Phys. C. 7 (1979) 3182.Google Scholar
  22. 22.
    W. KÄNZIG, and N. MAIKAFF, Helv. Phys. Acta 24 (1954) 343.Google Scholar
  23. 23.
    P. MURAGARAJ, T. R. N. KUTTY, and M. SUBBARAO, J. Mater. Sci. 21 (1986) 3521.Google Scholar
  24. 24.
    R. VIVEKANANDAN, and T. R. N. KUTTY, Mater. Sci. Engng B6 (1990) 221.Google Scholar
  25. 25.
    L. ESAKI, and P. J. STILES, Phys. Rev. Lett. 16 (1966) 1108.Google Scholar
  26. 26.
    L. C. CHANG, P. J. STILES, and L. ESAKI, J. Appl. Phys. 38 4440 (1967).Google Scholar
  27. 27.
    R. EINZINGER, Ann. Rev. Mater. Sci. 17 (1987) 299.Google Scholar
  28. 28.
    L. M. LEVINSON, and H. R. PHILIPP, Ceram. Bull. 65 (1986) 639.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • V. Ravi
    • 1
  • T. R. N. Kutty
    • 1
  1. 1.Materials Research Centre, Indian Institute of ScienceBangaloreIndia

Personalised recommendations