Skip to main content
Log in

Seasonal changes in CO2 and H2O gas exchange of young European beech (Fagus sylvatica L.)

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

The CO2 and H2O gas exchange of young beech trees (Fagus sylvatica L.) were measured over a growing season. Of particular interest was the adaptation of gas exchange to the low level of photon flux density in the understorey of the old beech. The recorded diurnal courses were subdivided into several classes of irradiance. The most frequent class was from only 30–40 μE * m-2 * s-1. Even at the highest irradiance values, no light saturation in assimilation occurred. The light compensation point lies below 3 μE * m-2 * s-1, because net dark respiration values are very low. Calculated from the initial slope of the light response curves a mean value of 0.02 mol CO2 * mol photons-1 shows a very efficient use of light be the young trees. At the optimal phase of assimilation, the relationship between the daily sum of irradiance and net photosynthesis is highly significantly correlated. Under the local climatic situation, the stomatal opening primarily depends on irradiance. In response to a change in irradiance, stomatal opening also changes rapidly. Therefore, there is only a loose relationship between transpiration rate and vapour pressure saturation deficit. Towards autumn, the transpiration coefficient (E/A-ratio, estimated under light saturation) increases strongly because net photosynthesis decreases simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor JS (1984) The role of maintenance respiration in plant growth. Plant Cell Environ 7: 561–569

    Google Scholar 

  • Benecke P, Ellenberg H (1986) Umsatz und Verfügbarkeit des Wassers im Buchen- und Fichtenbestand. In: Ellenberg et al (eds) Ökosystem-forschung — Ergebnisse des Sollingprojektes 1966–1986. Ulmer, Stuttgart, pp 356–374

    Google Scholar 

  • Caemmerer S von, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Google Scholar 

  • Eber W (1972) Über das Lichtklima von Wäldern bei Göttingen und seinen Einfluß auf die Bodenvegetation. Scripta Geobot III. Goltze, Göttingen

    Google Scholar 

  • Eggert A (1985) Zur Ökologie der Krautschichtvegetation in einem Bärlauch-Kalkbuchenwald. Dissertation, Universit Göttingen

  • Ehrhardt O (1988) Der Strahlungshaushalt eines Buchenwaldes und des — sen Abwandlung während der verschiedenen phänologischen Entwicklungsphasen. Ber Forschungszentrum Waldökosysteme Universität Göttingen, vol 45

  • Eller BM, Glättl R, Flach B (1981) Optische Eigenschaften und Pigmente von Sonnen- und Schattenblättern der Rotbuche (Fagus sylvatica L.) und der Blutbuche (Fagus sylvatica cv. atropunicea). Flora 171: 170–185

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (eds) (1986) Ökosystemforschung — Ergebnisse des Sollingprojektes 1966–1986. Ulmer, Stuttgart

    Google Scholar 

  • Gee GW, Federer CA (1972) Stomatal resistance during senescence of hardwood leaves. Water Resour Res 8: 1456–1460

    Google Scholar 

  • Heller H (1971) Estimation of photosynthetically active leaf area in forests. In: Ellenberg H (ed) Integrated experimental ecology. Ecol Stud 2 Springer, Berlin, Heidelberg, New York, pp 29–31

    Google Scholar 

  • Kiese O (1972) Bestandesmeteorologische Untersuchungen zur Bestimmung des Wärmehaushalts eines Buchenwaldes. Ber Inst Meteorol Klimatol TU Hannover 6: 132 S

    Google Scholar 

  • Koch W, Lange OL, Schulze E-D (1971) Ecophysiological investigations on wild and cultivated plants in the Negev desert. I. Methods: a mobile laboratory for measuring carbon dioxide and water vapour exchange. Oecologia 8: 296–309

    Google Scholar 

  • Küppers M, Koch G, Mooney HA (1988) Compensating effects to growth of changes in dry matter allocation in response to variation in photosynthetic characteristics induced by photoperiodic, light and nitrogen. In: Caemmerer S von, Evans JR, Adams WW (eds) Ecology of photosynthesis in sun and shade. Aust J Plant Physiol 15: 287–298

  • Larcher W (1984) Ökologie der Pflanzen auf ökophysiologischer Grundlage, 4th edn. Ulmer, Stuttgart

    Google Scholar 

  • Masarovicova E (1980) Photosynthesis, photorespiration and mitochondrial respiration of Fagus sylvatica seedlings: effects of temperature and oxygen concentration. Photosynthetica 14: 321–325

    Google Scholar 

  • McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteor 9: 191–216

    Google Scholar 

  • Mohr H, Schopfer P (1978) Lehrbuch der Pflanzenphysiologie, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nielsen BO (1978) Above ground food resource and herbivory in a beech forest ecosystem. Oikos 31: 273–279

    Google Scholar 

  • Oorschot JLF van (1976) Effects in relation to water and carbon dioxide exchange. In: Audus LJ (ed) Herbicides — physiology, biochemistry, ecology, vol 1. Academic Press, London, pp 305–334

    Google Scholar 

  • Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39: 77–92

    Google Scholar 

  • Schenk J, Stickan W, Runge M (1989) Belaubungsverlauf und Blattmerkmale von Buchen unter dem Einfluß von Kalkung und Stickstoffdüngung. Ber Forschungszentrum Waldökosysteme Universität Göttingen 49: 91–102

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159: 177–232

    Google Scholar 

  • Schulze E-D (1972) Die Wirkung von Licht und Temperatur auf den CO2-Gaswechsel verschiedener Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia 9: 235–258

    Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2-assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, NS, vol 12 B, Springer, Berlin Heidelberg New York, pp 181–230

    Google Scholar 

  • Stickan W (1985) Auswirkungen von Umweltchemikalien auf den Gaswechsel von Grünlandpflanzen. Scripta Geobot XIII Goltze, Göttingen

    Google Scholar 

  • Stickan W, Schulte M, Kakubari Y, Niederstadt F, Schenk J, Runge M (1991) Ökophysiologische und biometrische Untersuchungen in einem Buchenbestand Fagus sylvatica L. des Soilings als ein Beitrag zur Waldschadensforschung. Ber Forschungszentrum Waldökosysteme Universität Göttingen 18: 1–32

    Google Scholar 

  • Tanner V, Eller BM (1986) Veränderungen der spektralen Eigenschaften der Blätter der Buche (Fagus sylvatica L.) von Laubaustrieb bis Laubfall. Allg Forst Jagdztg 157: 108–117

    Google Scholar 

  • Ulrich B (1989) Effects of acid deposition on forest ecosystems in Europe. In: Adriano DC, Johnson AH (eds) Acidic precipitation, vol 2. Biological and ecological effects. Springer, Berlin Heidelberg New York, pp 189–272

    Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra. A mathematical model. Oecologia (Berl) 17: 281–291

    Google Scholar 

  • Zavitkovski J (1976) Ground vegetation biomass, production and efficiency of energy utilization in some northern Wisconsin forest ecosystems. Ecology 57: 694–706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stickan, W., Zhang, X. Seasonal changes in CO2 and H2O gas exchange of young European beech (Fagus sylvatica L.). Trees 6, 96–102 (1992). https://doi.org/10.1007/BF00226587

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226587

Key words

Navigation