Skip to main content
Log in

Changes in photosynthetic activity of buds and stem tissues of Fagus sylvatica during winter

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

The photosynthetic activity of leafless twigs and buds of Fagus sylvatica was determined by in vivo chlorophyll fluorescence from November to May. Measurements were made on the day of sampling, and during exposure to warm temperatures until reactivation was attained. Under the same conditions, bud development and growth were forced by exposure of cut twigs to 25/18° C at long-day conditions, and bud swelling and bud burst were monitored. Winter inactivation of photosynthesis results in a reduction of the photochemical efficiency of PS II, as indicated by lowering of FV/FM, from January through March. The greatest reduction is in cortical chlorenchyma, the least in folded leaflets and primordia of buds. Restoration of photosynthetic activity, brought about by warming, needed 3–4 weeks in cortex and 1–2 weeks in buds during the coldest period of winter. Frequency distributions based on three types of chlorophyll fluorescence transients, defined by quantitative fluorescence parameters, have proved to be a valuable method for a differentiated expression of the unequal functional activation states of parallel samples. The seasonal course of winter inactivation of photosynthesis did not correspond entirely with the depth of bud dormancy as revealed by the forcing treatments; inactivation of photosynthesis may be more closely synchronized with changes in frost hardiness; possible causes are discussed. We suggest, therefore, that a distinction should be made between inactivation of metabolic processes and depth of dormancy, even though these processes are inherently interrelated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Google Scholar 

  • Bolhàr-Nordenkampf HR, Lechner E (1988) Winter stress and chlorophyll fluorescence in Norway spruce (Picea abies L. Karst.). In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 173–180

    Google Scholar 

  • Brauner B (1989) Untersuchungen zur Einwirkung von Luftschadstoffen auf Jungpflanzen von Fagus sylvatica L. im Winter. Diplomarbeit FB Biologie, University of Munich

  • Champagnat P (1989) Rest and activity in vegetative buds of trees. Ann Sci For 46 (Suppl): 9s-26s

    Google Scholar 

  • Düring H, Ortoidze TV, Bushnell B (1990) Effects of subzero temperatures on chlorophyll fluorescence of grapevine buds. J Plant Physiol 136: 758–760

    Google Scholar 

  • Foyer CH (1988) Feedback inhibition of photosynthesis through sourcesink regulation in leaves. Plant Physiol Biochem 26: 483–492

    CAS  Google Scholar 

  • Gillies SL, Vidaver W (1990) Resistance to photodamage in evergreen conifers. Physiol Plant 80: 148–153

    Google Scholar 

  • Hawkins CDB, Lister GR (1985) In vivo chlorophyll fluorescence as a possible indicator of the dormancy stage in Douglas-fir seedlings. Can J For Res 15: 607–612

    Google Scholar 

  • Heber U (1959) Beziehungen zwischen der Größe der Chloroplasten und ihrem Gehalt an löslichen Eiweißen und Zuckern im Zusammenhang mit dem Frostproblem. Protoplasma 51: 284–298

    Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376: 105–115

    Article  CAS  PubMed  Google Scholar 

  • Langenfeld-Heyser R (1989) CO2-fixation in stem slices of Picea abies (L.) Karst: microautoradiographic studies. Trees 3: 24–32

    Google Scholar 

  • Larcher W (1981) Effects of low temperature stress and frost injury in plant productivity. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworth, London, pp 253–269

    Google Scholar 

  • Larcher W (1985) Kälte und Frost. In: Sorauer P (ed) Handbuch der Pflanzenkrankheiten, vol 1. Parey, Berlin, pp 107–320

    Google Scholar 

  • Larcher W, Bauer H (1981) Ecological significance of resistance to low temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Encyclopedia of plant physiology, new series, vol 12 A. Springer, Berlin Heidelberg New York, pp 403–437

    Google Scholar 

  • Larcher W, Lütz C, Nagele M, Bodner M (1988) Photosynthetic functioning and ultrastructure of chloroplasts in stem tissues of Fagus sylvatica. J Plant Physiol 132: 731–737

    Google Scholar 

  • Molisch H (1916) Pflanzenphysiologie als Theorie der Gärtnerei. Fischer, Jena

    Google Scholar 

  • Öquist G (1983) Effects of low temperature on photosynthesis. Plant Cell Environ 6: 281–300

    Google Scholar 

  • Öquist G (1986) Effects of winter stress on chlorophyll organization and function in Scots pine. J Plant Physiol 122: 169–179

    Google Scholar 

  • Öquist G, Malmberg G (1989) Light and temperature dependent inhibition of photosynthesis in frost-hardened and un-hardened seedlings of pine. Photosynth Res 20: 261–277

    Google Scholar 

  • Ortoidze TV, Matorin DN, Venediktov PS (1988) Effects of deep dormancy on the primary processes of photosynthesis in vine (Vitis vinifera) shoots. Biochem Physiol Pflanzen 183: 301–305

    Google Scholar 

  • Pisek A, Winkler E (1958) Assimilationsvermögen und Respiration der Fichte (Picea excelsa Link) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) an der alpinen Waldgrenze. Planta 51: 518–543

    Google Scholar 

  • Pukacki P, Giertych M, Chalupka W (1980) Light filtering function of bud scales in woody plants. Planta 150: 132–133

    Google Scholar 

  • Pukacki P, Veselovsky VA, Veselova TV (1983) Effect of cold deacclimation on delayed fluorescence of spruce needles. Z Pflanzenphysiol 109: 267–273

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants (Ecological studies, vol 62) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Senser M, Beck E (1979) Kälteresistenz der Fichte. II. Einfluß von Photoperiode und Temperatur auf die Struktur und photochemische Reaktionen von Chloroplasten. Ber Dtsch Bot Ges 92: 243–259

    Google Scholar 

  • Senser M, Beck E (1984) Correlation of chloroplast ultrastructure and membrane lipid composition to the different degrees of frost resistance achieved in leaves of spinach, ivy and spruce. J Plant Physiol 177: 41–55

    Google Scholar 

  • Siminovitch D (1981) Common and disparate elements in the processes of adaptation of herbaceous and woody plants to freezing — a perspective. Cryobiology 18: 166–185

    Google Scholar 

  • Strand M, Öquist G (1988) Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence of seedlings of Scots pine (Pinus sylvestris L.). Plant Cell Environ 11: 231–238

    Google Scholar 

  • Tranquillini W (1957) Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze. Planta 40: 612–661

    Google Scholar 

  • Tranquillini W, Plank A (1989) Ökophysiologische Untersuchungen an Rotbuchen (Fagus sylvatica L.) in verschiedenen Höhenlagen Nordund Südtirols. Centralbl Ges amtl Forstwes 106: 225–246

    Google Scholar 

  • Tselniker YL, Chetverikov AG (1988) Dynamics of chlorophyll content and amounts of reaction centres of photosystem 1 and 2 in Pinus sylvestris and Picea abies Karst. needles during a year. Photosynthetica 22: 483–490

    Google Scholar 

  • Wiebe HH (1975) Photosynthesis in wood. Physiol Plant 33: 245–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Otto Härtel on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larcher, W., Nagele, M. Changes in photosynthetic activity of buds and stem tissues of Fagus sylvatica during winter. Trees 6, 91–95 (1992). https://doi.org/10.1007/BF00226586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226586

Key words

Navigation