Advertisement

Theoretical and Applied Genetics

, Volume 83, Issue 4, pp 413–418 | Cite as

Chromosomal location of rDNA in Allium: in situ hybridization using biotin- and fluorescein-labelled probe

  • A. Ricroch
  • E. B. Peffley
  • R. J. Baker
Originals

Summary

A biotin- and fluorescein-labelled probe of Helianthus argophyllus has been used to map specific repeated rDNA sequences by in situ hybridization on mitotic chromosomes of Alliwn cepa, Allium fistulosum, a diploid interspecific (Allium fistulosum x Allium cepa) F1 hybrid, and a triploid interspecific (2 x = A. cepa, 1 x = A. fistulosum) shallot. Hybridization sites were restricted to satellited and smallest pairs of chromosomes in both A. cepa and A. fistulosum. The number, size, and position of the hybridization sites distinguish homologous chromosomes and identify the individual chromosomes carrying the nucleolus organizing region (NOR) at the secondary constriction, as well as the individual chromosomes carrying an additional NOR. This in situ hybridization technique is the first reported in a plant species and offers new cytogenetic markers in Allium.

Key words

Chromosomes Introgression Karyotypic analysis Non radioactive labelling NOR regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambros PF, Matze MA, Matze AJM (1986) Detection of a 17-kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma 94:11–18Google Scholar
  2. Baker RJ, Wichman H (1990) Retrotransposon Mys is concentrated on the six chromosomes: implication for copy number containment. Evolution 44:2083–2088Google Scholar
  3. Choumane W, Heizmann P (1988) Structure and variability of nuclear ribosomal genes in the genus Helianthus. Theor Appl Genet 76:481–489Google Scholar
  4. Cortes F, Escalza P (1986) Analysis of different banding patterns and late replicating regions in chromosomes of Allium cepa, A. sativum and A. nigrum. Genetica 71:39–46Google Scholar
  5. Durante M, Tagliasacchi AM, Avanzi S (1985) Fast reannealing sequences of DNA in Allium cepa characterisation and chromosomal localization. Cytobios 44:263–271Google Scholar
  6. Emsweller SL, Jones HA (1938) Crossing-over, fragmentation, and formation of new chromosomes in an Allium species hybrid. Bot Gaz 99:729–772Google Scholar
  7. Hizume M, Sato S, Tanaka A (1980) A highly reproducible method of nucleolus organizing regions in plant. Stain Techol 55:87–90Google Scholar
  8. Ilyin Y, Tchurikov NA, Anaviev EV, Ryskov AP, Yenikolopov GN, Limborska SA, Maleeva NE, Gvozdev VA, Georgiev GP (1978) Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences. Cold Spring Harbor Symp Quant Biol 42:959–969Google Scholar
  9. Jhanwar SC, Prensky W, Chaganti RSK (1981) Localization and metabolic activity of ribosomal genes in Chinese hamster meiotic and mitotic chromosomes. Cytogenet Cell Genet 30:39–46Google Scholar
  10. Jones RN, Rees H (1968) Nuclear DNA variation in Allium. Heredity 23:591–605Google Scholar
  11. Lapitan NLV, Sears RG, Raybourn AL, Gill BS (1986) Wheatrye translocations: detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J Hered 77:415–419Google Scholar
  12. Lapitan NLV, Gill BS, Sears RG (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Sci 27:682–687Google Scholar
  13. Levan A (1936) Die Zytologie von Allium cepa x fistulosum. Hereditas 21:195–214Google Scholar
  14. Maggini F, Barsanti P, Marazia T (1978) Individual variation of the nucleolus organizer regions in Allium cepa and Allium sativum. Chromosoma 66:173–184Google Scholar
  15. Moyzis RK, Albright KL, Bartholdi MF, Cram LS, Deaven LL, Hildebrand CE, Josta NE, Longmire JL, Meyne J, Robinson TS (1987) Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95:375–386Google Scholar
  16. Noda S (1953) A new typed nucleolar chromosome and a supernumery fragment chromosome in Allium cepa L. Kyushu Mem Fac Sci 1:139–146Google Scholar
  17. Peffley EB, Currah L (1988) The chromosomal locations of enzyme-coding genes Adh-1 and Pgm-1 in Allium flstulosum L. Theor Appl Genet 75:945–949Google Scholar
  18. Peffley EB, Mangum PD (1990) Introgression of Allium flstulosum L. into Allium cepa L.: cytogenetic evidence. Theor Appl Genet 79:113–118Google Scholar
  19. Perkins DY, Kehr AE, Brown RT, Tims EC, Miller JC (1958) ‘Delta Giant’, a new long season shallot. Circular No. 52. Louisiana State University and Agricultural and Mechanical College, Agricultural Experiment Station, Baton Rouge/LAGoogle Scholar
  20. Pijnacker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Can J Genet Cytol 26:415–419Google Scholar
  21. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81Google Scholar
  22. Rayburn AL, Gill BS (1987) Use of repeated DNA sequences as cytological markers. Am J Bot 74 (4):574–580Google Scholar
  23. Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33:209–218Google Scholar
  24. Sato S (1981) Cytological studies on the satellited chromosomes of Allium cepa. Caryologia 34:431–440Google Scholar
  25. Schubert I (1984) Mobile nucleolus organizing region (NORs) in Allium (Liliaceae s. lat.)? — Inferences from the specificity of silver staining. Plant Syst Evol 144:291–305Google Scholar
  26. Schubert I, Ohle H, Hanelt P (1983) Phylogenetic conclusions from Giemsa banding and NOR staining in top onions. Plant Syst Evol 143:245–256Google Scholar
  27. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148Google Scholar
  28. Sybenga J (1983) Rye chromosome nomenclature and homoeology relationships. Workshop report. Z Pflanzenzuecht 90 (4):297–304Google Scholar
  29. Warburton D, Henderson AS (1979) Sequential silver staining and hybridization in situ on nucleolus organizing region in human cells. Cell Genet 24:168–175Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Ricroch
    • 1
  • E. B. Peffley
    • 1
  • R. J. Baker
    • 2
  1. 1.Department of Agronomy, Horticulture, and Entomology and the Institute of BiotechnologyTexas Tech UniversityLubbockUSA
  2. 2.Department of Biological Sciences and the Institute of BiotechnologyTexas Tech UniversityLubbockUSA

Personalised recommendations