Skip to main content
Log in

Interrelationship between oxygen consumption, superoxide anion and hydrogen peroxide formation in phagocytosing guinea pig polymorphonuclear leucocytes

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The paper presents an experimental procedure for a simultaneous assay of oxygen consumption, O2 release and H2O2 accumulation at a very early stage of the respiratory burst that is induced by phagocytosis in guinea pig polymorphonuclear leucocytes. The main findings are as follows:

  1. (a)

    The oxygen consumption that is measurable does not correspond to all oxygen that is reduced. The relationship between the actual oxygen consumed and the amount that is reduced depends on the fate of the intermediate products O2 and H2O2.

  2. (b)

    O2 is measurable extracellularly by the reduction of cytochrome c. When cytochrome c oxidizes the extracellular O2 , molecular oxygen is formed. This fact is shown by a decrease of oxygen consumption. The molar ratio between the O2 detected and the oxygen given back is 1.

  3. (c)

    The amount of O2 released from the cells accounts for only a small part of oxygen actually reduced.

  4. (d)

    H2O2 is detectable only in the presence of NaN3. In this condition almost all oxygen consumed is recovered in the form of H2O2. The molar ratio O2/H2O2 is near unity. The amount of H2O2 derived from dismutation of O2 −1 released is only an aliquot of the total H2O2 accumulated. Thus, most of H2O2 is derived from intracellular sources.

  5. (e)

    In the absence of inhibitors of H2O2 degrading reactions, no detectable accumulation of peroxide occurs. Under these conditions, the main part of H2O2 formed is degraded in almost equal amount by catalase and myeloperoxidase, while only a small aliquot is degraded by NaN3 insensitive reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldridge, C. W. and Gerard, R. W., 1933. Amer. d. Physiol. 103, 235–236.

    Google Scholar 

  2. Sbarra, A. J. and Karnovsky, M. L., 1959. J. Biol. Chem. 234, 1355–1362.

    Google Scholar 

  3. Rossi, F. and Zatti, M., 1964. Brit. J. Exp. Pathol. 45, 548–559.

    Google Scholar 

  4. Rossi, F., Romeo, D. and Patriarca, P., 1972. J. Reticuloendothel. Soc. 12, 127–149.

    Google Scholar 

  5. Iyer, G. Y. N., Islam, M. F. and Quastel, J. H., 1961. Nature 192, 535–541.

    CAS  Google Scholar 

  6. Homan-Müller, J. W. T., Weening, R. S. and Roos, D., 1975. J. Lab. Clin. Med. 85, 198–207.

    Google Scholar 

  7. Babior, B. M., Kipnes, R. S. and Curnutte, J. T., 1973. J. Clin. Invest. 52, 741–744.

    Google Scholar 

  8. Strauss, B. S. and Stetson, C. A., 1960. J. Exp. Med. 112,653–669.

    Google Scholar 

  9. Graham, R. C. J., Karnovsky, M. J., Shafer, A. W., Glass, E. A. and Karnovsky, M. L., 1967. J. Cell. Biol. 32,629–647.

    Google Scholar 

  10. Patriarca, P., Cramer, R., Marussi, M., Moncalvo, S. and Rossi, F., 1971. J. Reticuloendothel. Soc. 10, 251–268.

    Google Scholar 

  11. Romeo, D., Zabucchi, G. and Rossi, F., 1973. Nature New Biol. 243, 111–112.

    Google Scholar 

  12. Rossi, F., Zatti, M., Patriarca, P. and Cramer, R., 1971. J. Reticuloendothel. Soc. 9, 67–85.

    Google Scholar 

  13. Kakinuma, K., 1974. Biochim. Biophys. Acta 348, 76–85.

    Google Scholar 

  14. Goetzl, E. J. and Austen, K. F., 1974. J. Clin. Invest. 53,591–599.

    Google Scholar 

  15. Schell-Frederick, E., 1974. FEBS Lett. 48, 37–40.

    Google Scholar 

  16. Hawkins, D., 1973. J. Immunol. 110, 294–296.

    Google Scholar 

  17. Johnston, R. B., Jr. and Lehmeyer, J. E., 1976. J. Clin. Invest. 57, 836–841.

    Google Scholar 

  18. Romeo, D., Jug, M., Zabucchi, G. and Rossi, F., 1974. FEBS Lett. 42, 90–93.

    Google Scholar 

  19. Iyer, G. Y. N. and Quastel, J. H., 1963. Canad. J. Biochem. Phys. 41, 427–434.

    Google Scholar 

  20. Zatti, M. and Rossi, F., 1966. Experientia 22, 758–760.

    Google Scholar 

  21. Paul, B. B., Strauss, R. R., Jacobs, A. A. and Sbarra, A. J., 1972. Exp. Cell. Res. 73, 456–462.

    Google Scholar 

  22. Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F., and Rossi, F., 1975. Biochim. Biophys. Acta 385, 380–386.

    Google Scholar 

  23. Rossi, F., Patriarca, P., Romeo, D. and Zabucchi, G., 1976. The Reticuloendothelial System in Health and Disease — A (Reichard, S. M., Escobar, M. R. and Friedman, H. eds.) pp. 205–223, Plenum Press, New York and London.

  24. Rossi, F., Zatti, M. and Patriarca, P., 1969. Biochim. Biophys. Acta 184, 201–203.

    Google Scholar 

  25. Hohn, D. C. and Lehrer, R. L., 1975. J. Clin. Invest. 55,707–713.

    Google Scholar 

  26. Babior, B. M., Curnutte, J. T. and McMurrich, B. J., 1976. J. Clin. Invest. 58, 989–996.

    Google Scholar 

  27. Iverson, D., De Chatelet, L. R., Spitznagel, J. K. and Wang, P., 1972. J. Clin. Invest. 59, 282–290.

    Google Scholar 

  28. Cagan, R. H. and Karnovsky, M. L. 1964. Nature 204, 255–257.

    Google Scholar 

  29. Baehner, H. L., Gilman, N. and Karnovsky, M. L., 1970. J. Clin. Invest. 49, 692–700.

    Google Scholar 

  30. Segal, A. W. and Peters, T. J., 1976. Lancet 1, 1363–1365.

    Google Scholar 

  31. Briggs, R. T., Drath, B. D., Karnovsky, M. L. and Karnovsky, M. J. 1975. J. Cell. Biol. 67, 566–586.

    Google Scholar 

  32. Goldstein, I. M., Roos, D., Kaplan, H. B. and Weissman, G., 1975. J. Clin. Invest. 56, 1155–1163.

    Google Scholar 

  33. Johnston, R. B., Jr., Keele, B. B., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L. and Rajagopalan, K. V., 1975. J. Clin. Invest. 55, 1357–1372.

    Google Scholar 

  34. Roos, D., Homan-Müller, J. W. T. and Weening, R. S., 1976. Biochem. Biophys. Res. Commun. 68, 43–50.

    Google Scholar 

  35. Takanaka, K. and O'Brien, P. J., 1975. Arch. Biochem. Biophys. 169, 428–435.

    Google Scholar 

  36. Beauchamp, C. and Fridovich, I., 1971. Anal. Biochem. 44, 276–287.

    Google Scholar 

  37. McCord, J. M. and Fridovich, I., 1969. J. Biol. Chem. 244, 6049–6055.

    Google Scholar 

  38. Van Gelder, B. F. and Slater, E. C., 1962. Biochim. Biophys. Acta 58, 593–595.

    Google Scholar 

  39. Loschen, G., Flohé, L. and Chance, B., 1971. FEBS Lett. 18, 261–264.

    Google Scholar 

  40. Root, R. K., Metcalf, J., Oshino, N. and Chance, B., 1975. J. Clin. Invest. 55, 945–955.

    Google Scholar 

  41. Thurman, R. G., Ley, H. G. and Scholz, R., 1972. Eur. J. Biochem. 25, 420–430.

    Google Scholar 

  42. Paul, B. B. and Sbarra, A. J., 1968. Biochim. Biophys. Acta 156, 168–178.

    Google Scholar 

  43. Patriarca, P., Cramer, R., Dri, P., Soranzo, M. R. and Rossi, F., 1973. Biochem. Pharmacol. 22, 3257–3266.

    Google Scholar 

  44. Brill, A. S. Peroxidases and Catalases., 1966. Comprehensive Biochemistry (Florkin and Stots, eds.) Vol. 14, pp. 447–479, Elsevier Publishing Co., Amsterdam.

  45. Nicholls, P., 1966. Hemes and Hemoproteins (Chance, B., Estabrook, R. W. and Yonetani, T., eds.) pp. 307–318. Academic Press, New York, London.

  46. McCord, J. M., Crapo, J. D. and Fridovich, I., 1977. Superoxide and Superoxide Dismutases (Michelson, A. M., McCord, J. M. and Fridovich, I., eds.) pp. 11–17, Academic Press, London.

  47. Seki, H., Ilan, Y. A. and Stein, G., 1976. Biochim. Biophys. Acta 440, 573–586.

    Google Scholar 

  48. Zabucchi, G., Soranzo, M. R., Rossi, F. and Romeo, D., 1975. FEBS Lett. 54, 44–48.

    Google Scholar 

  49. Zurier, R. B., Weissman, G., Hoffstein, S., Kammerman, S. and Tai, H. H., 1974. J. Clin. Invest. 53, 297–309.

    Google Scholar 

  50. Weening, R. S., Wever, R. and Roos, D., 1975. J. Lab. Clin. Med. 85, 245–252.

    Google Scholar 

  51. Root, R. K. and Metcalf, J. A., 1977. Movement, Metabolism and Bactericidal Mechanisms of Phagocytes (Rossi, F., Patriarca, P. and Romeo, D., eds.) pp. 185–199, Piccin Medical Books, Padova.

  52. Drath, D. B. and Karnovsky, M. L., 1975. J. Exp. Med. 141, 257–262.

    Google Scholar 

  53. Patriarca, P., Cramer, R. and Dri, P., 1977. Movement, Metabolism and Bactericidal Mechanisms of Phagocytes (Rossi, F., Patriarca, P. and Romeo, D., eds.) pp. 167–174, Piccin Medical Books, Padova.

  54. Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E. and Rossi, F., 1973. Biochem. Biophys. Res. Commun. 53, 830–837.

    Google Scholar 

  55. Butler, J., Jayson, G. G., and Swallow, A. J., 1975. Biochim. Biophys. Acta 408, 215–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietro, D., Paolo, B., Giorgio, B. et al. Interrelationship between oxygen consumption, superoxide anion and hydrogen peroxide formation in phagocytosing guinea pig polymorphonuclear leucocytes. Mol Cell Biochem 23, 109–122 (1979). https://doi.org/10.1007/BF00226231

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226231

Keywords

Navigation