Skip to main content
Log in

Src homology domains of v-Src stabilize an active conformation of the tyrosine kinase catalytic domain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To examine the interactions between Src homology,domains and the tyrosine kinase catalytic domain of v-Src, various combinations of domains have been expressed in bacteria as fusion proteins. Constructs containing the isolated catalytic domain, SH2 + catalytic domain, and SH3 + SH2 + catalytic domains were active in autophosphorylation assays. For the catalytic domain of v-Src, but not for v-Abl, addition of exogenous Src SH3-SH2 domains stimulated the autophosphorylation activity. In contrast to results for autophosphorylation, constructs containing Src homology domains were more active towards a synthetic peptide substrate than the isolated catalytic domain. The ability of the SH2 and SH3 domains of v-Src to stabilize an active enzyme conformation was also confirmed by refolding after denaturation in guanidinium hydrochloride. Collectively the data suggest that, in addition to their roles in intermolecular protein-protein interactions, the Src homology regions of v-Src exert a positive influence on tyrosine kinase function, potentially by maintaining an active conformation of the catalytic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper JA, Howell B: The when and how of Src regulation. Cell 73: 1051–1054, 1993

    Article  CAS  PubMed  Google Scholar 

  2. Cohen GB, Ren R, Baltimore D: Modular binding domains in signal transduction proteins. Cell 80: 237–248, 1995

    Article  CAS  PubMed  Google Scholar 

  3. Pawson T: Protein modules and signalling networks. Nature 373: 573–580, 1995

    Article  CAS  PubMed  Google Scholar 

  4. Mayer BJ, Hirai H, Sakai R: Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases. Curr Biol 5: 296–305, 1995

    Article  CAS  PubMed  Google Scholar 

  5. Ren R, Ye Z, Baltimore D: Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev 8: 783–795, 1994

    Article  CAS  PubMed  Google Scholar 

  6. Cooper JA, Gould KL, Cartwright CA, Hunter T: Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231: 1431–1434, 1986

    Article  CAS  PubMed  Google Scholar 

  7. Laudano AP, Buchanan JM: Phosphorylation of tyrosine in the carboxyl-terminal tryptic peptide of pp60c-src. Proc Natl Acad Sci USA 83: 892–896, 1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roussel RR, Brodeur SR, Shalloway D, Laudano AP: Selective binding of activated pp60 c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of p60 c-src. Proc Natl Acad Sci USA 88: 10696–10700, 1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Superti-Furga G, Fumagalli S, Koegl M, Courtneidge SA, and Draetta G: Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J 12: 2625–2634, 1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy SM, Bergman M, Morgan DO: Suppression of c-Src activity by C terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 13: 5290–5300, 1993

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eck MJ, Atwell SK, Shoelson SE, Harrison SC: Structure of the regulatory domains of the Src-family tyrosine kinase Lek. Nature 368: 764–769, 1994

    Article  CAS  PubMed  Google Scholar 

  12. Cross FG, Garber EA, Hanafusa H: N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene. Mol Cell Biol 5: 2789–2795, 1985

    CAS  PubMed  PubMed Central  Google Scholar 

  13. DeClue JE, Martin GS: Linker insertion-deletion mutagenesis of the v-src gene: isolation of host- and temperature-dependent mutants. J Virol 63: 542–554, 1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nemeth SP, Fox LG, DeMario M, Brugge JS: Deletions within the amino terminal half of the c-src gene product that alter the functional activity of the protein. Mol Cell Biol 9: 1109–1119, 1989

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raymond VW, Parsons JT: Identification of an amino terminal domain required for the transforming activity of the Rous sarcoma virus src protein. Virology 160: 400–410, 1987

    Article  CAS  PubMed  Google Scholar 

  16. Verderame MF, Kaplan JM, Varmus HE: A mutation in v-src that removes a single conserved residue in the SH-2 domain of pp60v-src restricts transformation in a host-dependent manner. J Virol 63: 33–8348, 1989

    Article  Google Scholar 

  17. Okamura H, Resh MD: Differential binding of pp60c-src and pp60v-src to cytoskeleton is mediated by SH2 and catalytic domains. Oncogene 9: 2293–2303, 1994

    CAS  PubMed  Google Scholar 

  18. Garcia P, Shoelson SE, Drew JS, Miller WT: Phosphopeptide occupancy and photoaffinity cross-linking of the v-Src SH2 domain attenuates tyrosine kinase activity. J Biol Chem 269: 30574–30579, 1994

    Article  CAS  PubMed  Google Scholar 

  19. Veron M, Radzio-Andzelm E, Tsigelny I, Ten Eyck LF, Taylor SS: A conserved helix motif complements the protein kinase core. Proc Natl Acad Sci USA 90: 10618–1062, 1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeya T, Feldman RA, and Hanafusa H: DNA sequence of the viral and cellular src genes of chickens. J Virol 44: 1–11, 1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith DB, and Johnson KS: Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40, 1988

    Article  CAS  PubMed  Google Scholar 

  22. Garcia P, Shoelson SE, George ST, Hinds DA, Goldberg AR, and Miller WT: Phosphorylation of synthetic peptides containing Tyr-Met-X-Met motifs by nonreceptortyrosine kinases in vitro. J Biol Chem 268: 25146–25151, 1993

    Article  CAS  PubMed  Google Scholar 

  23. Budde, RJA: Evidence for kinetically distinct forms of pp60c-src with different Km values for their protein substrate. J Biol Chem 268: 24868–24872, 1993

    Article  CAS  PubMed  Google Scholar 

  24. Casnellie JE: Assay of protein kinases using peptides with basic residues for phosphocellulose binding. Methods Enzymol 200: 115–120, 1991

    Article  CAS  PubMed  Google Scholar 

  25. Mayer BJ, and Baltimore D: Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Bio1 14: 2883–2894, 1994

    CAS  Google Scholar 

  26. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J: Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72: 779–790, 1993

    Article  CAS  PubMed  Google Scholar 

  27. Yu H, Rosen MK, Sin TB, Seidel-Dugan C, Brugge JS, Schreiber SL: Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258: 1665–1668, 1992

    Article  CAS  PubMed  Google Scholar 

  28. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Article  CAS  PubMed  Google Scholar 

  29. Saya H, Lee PSY, Nishi T, Izawa I, Nakajima M, Gallick GE, and Levin VA: Bacterial expression of an active tyrosine kinase from a protein A/truncated c-src fusion protein. FEBS Lett. 327: 224–230, 1993

    Article  CAS  PubMed  Google Scholar 

  30. Casnellie JE, Krebs EG: The use of synthetic peptides for defining the specificity of tyrosine protein kinases. Advances Enz. Regul. 22: 501–515, 1984

    Article  CAS  Google Scholar 

  31. Wang JY, and Baltimore D: Localization of tyrosine kinase-coding region in v-abl oncogene by the expression of v-abl-encoded proteins in bacteria. (1985) J Biol Chem 260: 64–71, 1985

    Article  CAS  PubMed  Google Scholar 

  32. Wetlaufer DB, Ristow S: Acquisition of three-dimensional structure of proteins. Ann Rev Biochem 42: 135–158, 1973

    Article  CAS  PubMed  Google Scholar 

  33. Galakatos NG, Walsh CT: Specific proteolysis of native alanine racemases from Salmonella typhimurium: identification of the cleavage site and characterization of the clipped two-domain proteins. Biochemistry 26: 8475–8480, 1987

    Article  CAS  PubMed  Google Scholar 

  34. Burbaum JJ, and Schimmel P: Assembly of a class I tRNA synthetase from products of an artificially split gene. Biochemistry 30: 319–324, 1991

    Article  CAS  PubMed  Google Scholar 

  35. Brems DN: Solubility of different folding conformers of bovine growth hormone. Biochemistry 27: 4541–4546, 1988

    Article  CAS  Google Scholar 

  36. Panayotou G, Bax B, Gout I, Federwisch M, Wroblowski B, Dhand R, Fry MJ, Blundell TL, Wollmer A, Waterfield MD: Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J 11: 4261–4272, 1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, and Weiss MA: Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J 12: 795–802, 1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sugimoto S, Wandless T, Shoelson SE, Neel BG, and Walsh CT: Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J Biol Chem 269: 13614–13622, 1994

    Article  CAS  PubMed  Google Scholar 

  39. Brugge JS: Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90. Curr Top Microbiol Immunol 123: 1–22, 1986

    CAS  PubMed  Google Scholar 

  40. Xu Y and Lindquist S: Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci USA 90: 7074–7078, 1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdel-Ghany A, El-Gendy K, Zhang S, and Racker E: Control of src kinase activity by activators, inhibitors, and substrate chaperones. Proc Natl Acad Sci USA 87: 7061–7065, 1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Miller, W.T. Src homology domains of v-Src stabilize an active conformation of the tyrosine kinase catalytic domain. Mol Cell Biochem 158, 57–63 (1996). https://doi.org/10.1007/BF00225883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225883

Key words

Navigation