Skip to main content
Log in

Structure and function of the paraphysis cerebri in the rainbow trout, Salmo gairdneri Richardson

A histological, cytochemical, enzyme-cytochemical, ultrastructural and autoradiographic study

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The paraphysis cerebri of adult Salmo gairdneri is represented by a differentiated part of the pars impar telencephali of the telencephalic roof. It consists of a vaulted epithelial sheet, which displays only a few rostral evaginations and separates the cerebrospinal fluid (CSF) from the meningeal interstitial fluid. The fenestrated, sinusoidal portal system surrounding the paraphyseal epithelium appears to be part of a complex vascular bed of the dorsal telencephalic and diencephalic area. Myelinated and unmyelinated nerve fibers observed in the vicinity of the paraphyseal epithelium fail to make synaptic contact with paraphyseal cells. The single-layered epithelium is composed of characteristic, rather small, optically dense, cuboidal and cylindrical cells, apically mutually attached by junctional complexes including zonulae occludentes.

These paraphyseal cells execute a high energetic and a moderate synthetic metabolism as indicated by ultrastructural, cytochemical and enzyme-cytochemical observations. Morphological evidence is presented for a multiple function of these cells in the regulation of the CSF: 1) water and solute elaboration into the ventricular system, 2) restricted uptake of high molecular weight organic substances from the CSF, 3) restricted uptake of low molecular weight substances from the CSF, but apparently not of GABA and of biogenic amines, 4) the formation and pinching-off of “blebs” as expression of a physiological mechanism not yet elucidated. The possible relationship between the level of development of the paraphysis cerebri and the sensitivity of animals to hydro-mineral metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T, Shimizu H (1964) Histochemical method for demonstrating aldolase. Histochemie 4:209–212

    Google Scholar 

  • Agnew W, Yuen TGH, Achtyl TR (1980a) Ultrastructural observations suggesting apocrine secretion in the choroid plexus: a comparative study. Neurol Res 1:313–332

    Google Scholar 

  • Agnew W, Alvarez RB, Yuen TGH, Crews AK (1980b) Protein synthesis and transport by the rat choroid plexus and ependyma. Cell Tissue Res 208:261–281

    Google Scholar 

  • Ananthanarayanan V (1955) Nature and distribution of neurosecretory cells of the reptilian brain. Z Zellforsch 43:8–16

    Google Scholar 

  • Ariëns Kappers J (1949) Preliminary data on the function of the paraphysis cerebri in urodela. Experientia (Basel) 5:162–164

    Google Scholar 

  • Ariëns Kappers J (1950) The development and structure of the paraphysis cerebri in urodeles with experiments on its function in Ambystoma mexicanum. J Comp Neurol 92:93–127

    Google Scholar 

  • Ariëns Kappers J (1953) Beitrag zur experimentellen Untersuchung von Funktion und Herkunft der Kolmerschen Zellen des Plexus chorioideus beim Axolotl und Meerschweinchen. Z Anat Entwgesch 117:1–19

    Google Scholar 

  • Ariëns Kappers J (1955) The development of the paraphysis cerebri in man with comments on its relationship to the intercolumnar tubercle and its significance for origin of cystic tumors in the third ventricle. J Comp Neurol 102:425–510

    Google Scholar 

  • Ariëns Kappers J (1956a) On the presence of periodic acid Schiff positive substances in the paraphysis cerebri, the choroid plexuses and the neuroglia of Ambystoma mexicanum. Experientia (Basel) 12:187–189

    Google Scholar 

  • Ariëns Kappers J (1956b) On the development, structure and function of the paraphysis cerebri. In: Ariëns Kappers J (ed) Progress in neurobiology Proceedings of the First International Meeting of Neurobiologists. Elsevier Publ Comp, Amsterdam, pp 130–145

    Google Scholar 

  • Ariëns Kappers J (1982) The paraphysis cerebri. In: Crosby EC, Schnitzlein HN (eds) Comparative correlative neuroanatomy of the vertebrate telencephalon. MacMillan Publ Co., Inc, New York, pp 249–265

    Google Scholar 

  • Arnold M (1968) Histochemie; Einführung in Grundlagen und Prinzipien der Methoden. Springer, Berlin

    Google Scholar 

  • Baker JR (1946) The histochemical recognition of lipine. Quart J Micr Sci 87:441–471

    Google Scholar 

  • Ballantyne B (1967) Localization and interpretation in cholinesterase biochemistry. J Physiol (London) 191:54–55P

    Google Scholar 

  • Ballantyne B, Fourman J (1967) Cholinesterases and the secretory activity of the duck supra-orbital gland. J Physiol (London) 188:32–33P

    Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch 34:610–634

    Google Scholar 

  • Barka T (1960) A simple azo-dye method for histochemical demonstration of acid phosphatase. Nature (London) 187:248–249

    Google Scholar 

  • Bhargava HN (1973) The pineal organ of the minnow, Phoxinus phoxinus L. and a note on the effects of temperature, light, background responses, hypophysectomy and gonadectomy. Zool Jb Anat 91:478–499

    Google Scholar 

  • Bochenek A (1899) Über die Nervenendigungen in den Plexus chorioidei des Frosches. Bull de l'Acad Sci de Cracovic, Cl Sci Math et Nat, pp 338–346

  • Bonhag PF (1955) Histochemical studies on the ovarian nurse tissues and oocytes of the milkweed bug, Oncopeltus fasciatus (Dallas). 1 Cytology, nucleic acids and carbohydrates. J Morphol 96:381–439

    Google Scholar 

  • Bonting SL (1970) Sodium-potassium activated adenosinetriphosphatase and cation transport. In: Bittar EE (ed) Membranes and ion transport, Vol 1. Wiley-Interscience, London, pp 257–363

    Google Scholar 

  • Bootsma BK (1957) Over de ontwikkeling, structuur en vascularisatie van de parafyse bij enkele reptielen. Ned T Geneesk 101:600–601

    Google Scholar 

  • Brächet J (1953) The use of basic dyes and ribonuclease for the cytochemical detection of ribonucleic acid. Quart J Micr Sci 94:1–10

    Google Scholar 

  • Burstone MS (1959) New histochemical technique for the demonstration of tissue oxidase (cytochrome oxidase). J Histochem Cytochem 7:112–122

    Google Scholar 

  • Chayen J, Bitensky L, Butcher RG, Poulter LW (1969) A guide to practical histochemistry. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Chifelle TL, Putt FA (1951) Propylene and ethylene glycol as solvents for Sudan IV and Sudan Black B. Stain Technol 26:51–56

    Google Scholar 

  • Cserr H (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. J & A Churchill Ltd., London

    Google Scholar 

  • Dendy A (1909) Intracranial vascular system of Sphenodon. Phil Trans Roy Soc (London) Ser B, Vol 200:403–426

    Google Scholar 

  • Dendy A (1911) On the structure, development and morphological interpretation of the pineal organs and adjacent parts of the brain in the tuatara (Sphenodon punctatus). Phil Trans Roy Soc (London) Ser B, Vol 201:227–331

    Google Scholar 

  • Deurs B van, Møller M, Amtorp O (1978) Uptake of horseradish peroxidase from CSF into the choroid plexus of the rat, with special reference to transepithelial transport. Cell Tissue Res 187:215–234

    Google Scholar 

  • Diamond JM (1981) Coupling of water transport to active solute transport in epithelia. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, pp 355–363

    Google Scholar 

  • DiBona DR, Mills JW (1979) Distribution of Na+-pump sites in transporting epithelia. Fed Proc 38:134–143

    Google Scholar 

  • Dorn E (1957) Über den Feinbau der Paraphyse von Protopterus annectens. Z Zellforsch 46:115–120

    Google Scholar 

  • Falck B, Hillarp NÅ, Thieme G, Torpe A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Fernández-Llebrez P, Becerra J, Marín-Girón F (1982) Ultrastructure of the paraphysis cerebri of the water snake Natrix maura L. J Comp Neurol 208:345–351

    Google Scholar 

  • Fourman J (1966) Cholinesterase and sodium transport in the supra-orbital gland of the duck. J Anat 100:693

    Google Scholar 

  • Fourman J (1967) The distribution and variations of cholinesterase activity in the nephron and in other tissues concerned with sodium transport. J Physiol (London) 191:52–53P

    Google Scholar 

  • Friedrich-Freksa H (1932) Entwicklung, Bau und Bedeutung der Parietalgegend bei Teleostiern. Z wiss Zool 141:52–142

    Google Scholar 

  • Fujii R, Novales RR (1972) Nervous control of melanosome movements in vertebrate melanophores. In: Riley V (ed) Pigmentation: its genesis and biologic control. Appleton-Century-Crofts, New York, pp 315–325

    Google Scholar 

  • Glenner GG, Burtner HJ, Brown GR (1957) The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J Histochem Cytochem 5:591–600

    Google Scholar 

  • Gomori G (1941) Observations with differential stains on human islets of Langerhans. Am J Pathol 17:395–406

    Google Scholar 

  • Gomori G (1952) Microscopic histochemistry; Principles and practice. University Press, Chicago

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI Necturws. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1934) The endocranial blood vascular system of Amblystoma. Z mikr anat Forsch 36:540–544

    Google Scholar 

  • Herrick CJ (1935) The membranous parts of the brain, meninges and their blood vessels in Amblystoma. J Comp Neurol 61:297–346

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander, Ambystoma tigrinum. The University of Chicago Press, Chicago

    Google Scholar 

  • Herwig HJ (1981) The pineal organ. An ultrastructural and biochemical study on the pineal organ of Hemigrammus caudovittatus and other closely related characid fish species with special reference to the Mexican blind cave fish Astyanax mexicanus. Thesis, State University of Utrecht

  • Hess R, Scarpelli DG, Pearse AGE (1958) Cytochemical localization of pyridine nucleotide-linked dehydrogenases. Nature (London) 181:1531–1532

    Google Scholar 

  • Hetzel W (1978) Ependyma and ependymal protrusions of the lateral ventricles of the rabbit brain. Cell Tissue Res 192:475–488

    Google Scholar 

  • Hild W (1951) Vergleichende Untersuchungen über Neurosekretion im Zwischenhirn von Amphibien und Reptilien. Z Anat Entwgesch 115:459–479

    Google Scholar 

  • Hill C (1894) The epiphysis of teleosts and Amia. J Morphol 9:237–268

    Google Scholar 

  • Hochacka PW, Somero GN (1973) Strategies of biochemical adaption. WB Saunders Company, Philadelphia

    Google Scholar 

  • Holmgren U (1959) On the structure of the pineal area of teleost fishes. K Vet O Vitterh Samh Handl, F6, Ser B8, N:03:5–66

  • Holt SJ (1958) Indigogenic staining methods for esterases. In: Danielli JF (ed) General cytochemical methods, Vol 1. Academic Press, New York, pp 375–398

    Google Scholar 

  • Hori SH (1966) Effect of EDTA on histochemical demonstration of phosphorylase activity. J Histochem Cytochem 14:501–508

    Google Scholar 

  • Jansen WF (1975) The saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. A cytochemical and enzyme-cytochemical study, particularly with respect to coronet cells and glial cells. Neth J Zool 25:309–331

    Google Scholar 

  • Jansen WF, West R (1971) A cytochemical investigation of specific and non-specific cholinesterase activity in the saccus vasculosus of the rainbow trout. Proc Kon Ned Akad Wet Ser C 74:344–351

    Google Scholar 

  • Jansen WF, Weger RA de, Woutersen RA, Loveren H van (1976a) The saccus dorsalis of the rainbow trout, Salmo gairdneri Richardson. Histological, cytochemical, electron microscopical and autoradiograpic observations. Cell Tissue Res 167:467–491

    Google Scholar 

  • Jansen WF, Loveren H van, Woutersen RA, Weger RA de (1976b) Enzyme-cytochemistry of the saccus dorsalis of the rainbow trout, Salmo gairdneri Richardson. Histochemistry 48:293–306

    Google Scholar 

  • Kamer JC van den (1949) Over de ontwikkeling, de determinatie en de betekenis van de epiphyse en de paraphyse van de amphibieën. Thesis, State University of Utrecht

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–220

    Google Scholar 

  • Kelly DE (1964) An ultrastructural analysis of the paraphysis cerebri in newts. Z Zellforsch 64:778–803

    Google Scholar 

  • Kummer-Trost E (1956) Die Bildungen des Zwischenhirndaches der Agamidae, nebst Bemerkungen über die Lagebeziehungen des Vorderhirns. Gegenbaurs Morphol Jahrb 97:143–191

    Google Scholar 

  • Legait H, Legait E (1957a) Paraphyse et organe sub-fornical chez les Oiseaux. C R Soc Biol 151:365–367

    Google Scholar 

  • Legait H, Legait E (1957b) Modifications cérébrales secondaires à l'ablation ou à la cautérisation de la paraphyse chez Rana esculenta. CR Soc Biol 151:1418–1420

    Google Scholar 

  • Legait H, Legait E (1957c) Les voies extra-hypophysaires des noyaux neurosécrétoires hypothalamiques chez les batraciens et les reptiles. Acta Anat (Basel) 30:429–443

    Google Scholar 

  • Levitt DG (1981) Routes of membrane water transport: comparative physiology. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Mundsgaard, Copenhagen, pp 248–257

    Google Scholar 

  • Lierse W (1965) Die Gefäßversorgung der Epiphyse und Paraphyse bei Reptilien. Progr Brain Res 10:183–191

    Google Scholar 

  • Lillie RD (1944) Various oil soluble dyes as fat stains in the super-saturated isopropanol technic. Stain Technol 19:55–58

    Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47:595–781

    Google Scholar 

  • Mautner W (1965) Studien an der Epiphysis cerebri und am Subcommissuralorgan der Frösche. Mit Lebendbeobachtung des Epiphysenkreislaufs, Totalfärbung des Subcommissuralorgans und Durchtrennung des Reissnerschen Fadens. Z Zellforsch 67:234–270

    Google Scholar 

  • McComb RB, Bowers GN, Posen S (1979) Alkaline phosphatase. Plenum Press, New York and London

    Google Scholar 

  • McManus JFA (1948) Histological and histochemical uses of periodic acid. Stain Technol 23:99–108

    CAS  Google Scholar 

  • McManus JFA, Cason JE (1950) Carbohydrate histochemistry studied by acetylation techniques. I. Periodic acid methods. J Exp Med 91:651–654

    Google Scholar 

  • Mayahara H, Fujimoto K, Ando T, Ogawa K (1980) A new onestep method for the cytochemical localization of ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase activity. Histochemistry 67:125–138

    Google Scholar 

  • Mayahara H, Ando T, Fujimoto T, Ogawa K (1983) Membrane Na/K-adenosine triphosphatase (ATPase) (K-p-nitrophenylphosphatase) in epithelial cells. J Histochem Cytochem 31:224–226

    Google Scholar 

  • Meyer AEFH, Bloem JH (1966) Improved histochemical demonstration of carbonate dehydratase. Acta Histochem (Jena) 25:239–241

    Google Scholar 

  • Milhorat TH (1976) Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 47:225–288

    Google Scholar 

  • Mowry RW (1963) The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of alcian blue G8X and their combinations with periodic acid-Schiff reaction. Ann NY Acad Sci 106:402–423

    Google Scholar 

  • Oksche A (1968) Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z Zellforsch 48:74–129

    Google Scholar 

  • Owens DW, Ralph CL (1978) The pineal-paraphyseal complex of sea turtles. I. Light microscopic description. J Morphol 158:169–179

    Google Scholar 

  • Paul E (1968) Histochemische Studien an den Plexus chorioidei, an der Paraphyse und am Ependym von Rana temporaria L. Z Zellforsch 91:519–546

    Google Scholar 

  • Paul E (1972) Weitere enzymhistochemische und fluoreszenzmikroskopische Studien an den Plexus chorioidei und an der Paraphyse von Rana temporaria L. Z Zellforsch 129:76–91

    Google Scholar 

  • Pearse AGE (1972) Histochemistry; theoretical and applied, Vol 2, ed 3. Churchill Livingstone, Edinburgh, London

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electronmicroscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Ritter J (1973) Quantitative Untersuchungen zum histochemischen Nachweis von GABA-Transaminase-SSA-Dehydrogenase. Acta Histochem (Jena) 47:153–175

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. R Oldenbourg, München, Wien

    Google Scholar 

  • Roofe PG (1935) The endocranial blood vessels of Amblystoma tigrinum. J Comp Neurol 61:257–293

    Google Scholar 

  • Roofe PG (1936) The histology of the paraphysis of Amblystoma. J Morphol 59:1–10

    Google Scholar 

  • Rudolph G, Klein HJ (1964) Histochemische Darstellung und Verteilung der Glukose-6-Phosphat-Dehydrogenase in normalen Rattenorganen. Histochemie 4:328–251

    Google Scholar 

  • Scharrer E (1951) Neurosecretion X. A relationship between the paraphysis and the paraventricular nucleus in the garter snake (Thamnophis sp.). Biol Bull 101:106–113

    Google Scholar 

  • Schmidt WJ (1909) Beiträge zur Kenntnis der Parietalorgane der Saurier. Z Wiss Zool 92:359–426

    Google Scholar 

  • Selenka E (1980) Das Stirnorgan der Wirbeltiere. Biol Centralbl 10:323–326

    Google Scholar 

  • Shuangshoti S, Netsky MG (1966) Choroid plexus and paraphysis in lower vertebrates. J Morphol 120:157–188

    Google Scholar 

  • Sörensen AD (1894) Comparative study of the epiphysis and roof of the diencephalon. J Comp Neurol 4:153–170

    Google Scholar 

  • Spring KR, Hope A, Persson B-E (1981) Quantitative light microscopic studies of epithelial fluid transport. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Mundsgaard, Copenhagen, pp 190–200

    Google Scholar 

  • Stockem W (1965) Zur Ontogenese und Funktion der Paraphyse der Amphibien. Z Zellforsch 67:427–460

    Google Scholar 

  • Studnička FK (1905) Die Parietalorgane. In: Oppel A (ed) Lehrbuch der vergleichenden mikroskopischen Anatomie, Teil V. Gustav Fischer, Jena, pp 1–254

    Google Scholar 

  • Trost E (1953) Die Entwicklung, Histogenese und Histologie der Epiphyse, der Paraphyse, des Velum transversum, des Dorsalsackes und des subcommissuralen Organes bei Anguis fragilis, Chalcides ocellatus und Natrix natrix. Acta Anat (Basel) 18:326–342

    Google Scholar 

  • Ueno S, Umar H, Bambauer HJ, Ueck M (1982) Ultracytochemical localization of Ca++-ATPase activity in the paraphyseal epithelial cells of the frog, Rana esculenta. Cell Tissue Res 235:3–11

    Google Scholar 

  • Urano A (1968) Monoamine oxidase in the hypothalamic neurosecretory system and the adenohypophysis of the Japanese quail and the mouse. J Fac Univ Tokyo, Sect IV 11:436–451

    Google Scholar 

  • Vethamany VG, Lazarus SS (1967) Ultrastructural localization of Mg++-dependent dinitrophenol-stimulated adenosine triphosphatase in human blood platelets. J Histochem Cytochem 15:267–272

    Google Scholar 

  • Vollrath L (1981) The pineal organ. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, Bd VI/7. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Waring H (1963) Color change mechanisms of cold-blooded vertebrates. Academic Press, New York

    Google Scholar 

  • Weber W (1965) Entwicklung und Funktion des neurosekretorischen Systems von Salamandra salamandra. Z Zellforsch 66:35–65

    Google Scholar 

  • Whittembury G, Verde de Martinez C, Paz-Aliaga A, Linares H (1981) Paracellular water flow in leaky epithelia. Evidence from solvent drag of extracellular solutes. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, pp 161–171

    Google Scholar 

  • Willes JS, Ellory JC (1983) Ouabain sensitivity: diversity and disparities. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport. Vol 19 Academic Press, New York, pp 277–280

    Google Scholar 

  • Yuen TGH, Agnew WF, Carregal EJA (1975) Lysosomal handling of tellurium by the choroid plexus following chronic administration: an ultrastructural study. Exp Neurol 47:213–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, W.F. Structure and function of the paraphysis cerebri in the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res. 242, 127–143 (1985). https://doi.org/10.1007/BF00225570

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225570

Key words

Navigation