Skip to main content
Log in

Calcium reabsorption in the posterior caeca of the midgut in a terrestrial crustacean, Orchestia cavimana

Ultrastructural changes in the postexuvial epithelium

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

During molting, the epithelium of the posterior caeca (PC) of the midgut in the terrestrial crustacean, Orchestia cavimana, is active in calcium turnover. In the preexuvial period, epithelial cells that progressively differentiate into cell-type III secrete ionic calcium (originating from the old cuticle) from the base to the apex of the cell within a typical extracellular network of channels; the calcium is then stored in the PC lumen as calcareous concretions. Immediately after exuviation, the epithelial cells rapidly differentiate into cell-type IV, reabsorbing calcium from the concretions through successive generations of spherites which quickly appear, grow, and then disappear from the apex to the base of the same extracellular network. The PC epithelium is thus alternatively calcium-loaded and unloaded. When the calcium-reabsorbing process is complete (average 48 h after exuviation), the epithelial cells again differentiate into two different regional cellular types (cell-type I in the distal segment and cell-type II in the proximal segment) characteristic of the intermolt period.

The dynamic changes in the PC epithelium during the postexuvial period are discussed, including the characteristic features of cell-type IV and of the reabsorption spherites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolins-Krogis A (1968) Shell regeneration in Helix pomatia with special reference to the elementary calcifying particles. Symp Zool Soc Lond 22:75–92

    Google Scholar 

  • Abolins-Krogis A (1970) Electron microscope studies of the intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail, Helix pomatia (L.). Z Zellforsch 108:501–515

    Google Scholar 

  • Becker GL, Chen CH, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. J Cell Biol 61:316–326

    Article  CAS  PubMed  Google Scholar 

  • Beaulaton J (1968) Modifications ultrastructurales des cellules sécrétrices de la glande prothoracique du ver à soie au cours des 2 derniers âges larvaires. II — Le glycogène, ses relations avec le chondriome et le réticulum endoplasmique. J Microsc7:673–692

    Google Scholar 

  • Berridge MG, Oschman JL (1972) Transporting epithelia. Academic Press New York, 1–91

    Google Scholar 

  • Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667

    CAS  Google Scholar 

  • Bubel A (1983) A fine structural study of the calcareous opercular plate and associated cells a polychaete annelid. Tissue Cell 15:457–476

    Google Scholar 

  • Coombs TL, George SG (1978) Mechanisms of immobilization and detoxification of metal in marine organisms. In: DS McLusky, AJ Berry (Eds) Proceedings of the 12th European Symposium on Marine Biology, Stirling, Scotland, 1977. Pergamon Press, Eondon, pp 179–187

    Google Scholar 

  • Durfort M (1978) Eocalizacion y ultraestructura del glucogéno en Mytilicola intestinalis, Steuer. (Crustacea Copepoda). Inv Pes 42:501–511

    Google Scholar 

  • Durfort M (1981) Localizacion y ultraestructura del glucogéno y de las inclusiones lipidicas en el hepatopancreas y la gonada de Trachydermon cinereus, Thiele (Mollusca, Poliplacophora). Iberus 1:79–84

    Google Scholar 

  • Espey LL, Stutts RH (1972) Exchange of cytoplasm between cells of the membrana granulosa in rabbit ovarian follicles. Biol Reprod 6:168–181

    Google Scholar 

  • Fain-Maurel MA (1966) Eocalisations intramitochondriale et intracisternale de glycogène monoparticulaire. CR Acad Sci France 263:1107–1110

    Google Scholar 

  • Garant PR (1972) The demonstration of complex gap junctions between the cells of the enamel organ with lanthanum nitrate. J Ultrast Res 40:333–348

    Google Scholar 

  • Gibson R, Barker PL (1979) The dacapod hepatopancreas. In: M Barnes (Ed) Oceanography and marine biology. Aberdeen University Press, pp 329–346

  • Graf F (1968) Ee stockage de calcium avant la mue chez les Crustacés Amphipodes Orchestia (talitridé) et Niphargus (Gammaridé hypogé). Thèse Doct Sci Nat Dijon N∘ 105 Imp Berthier, Arch Orig Centre Document. CNRS n∘ 2690 1–216

  • Graf F (1971) Dynamique du calcium dans l'épithelium des caecums postérieurs d'Orchestia cavimana Heller (Crustacé, Amphipode). Rôle de l'espace intercellulaire. CR Acad Sci France 273:1828–1831

    Google Scholar 

  • Graf F (1978) Extrusion massive de matériel nucléaire (par bourgeonnement ou directe) lors de l'inversion du sens de la sécrétion d'un epithelium de Crustacé. CR Acad Sci France, 287:1219–1222

    Google Scholar 

  • Graf F, Meyran JC (1983) Premolt calcium secretion in midgut posterior caeca of the Crustacean Orchestia: ultrastructure of the epithelium. J Morphol 177:1–23

    Google Scholar 

  • Graf F, Michaut P (1977) Ees sphérules calciques de l'épithélium caecal d'Orchestia (Crustacé, Amphipode), forme de transport de calcium dans le sens apico-basal. CR Acad Sci France 248:49–52

    Google Scholar 

  • Graf F, Michaut P (1980) Fine structure of the midgut posterior caeca in the crustacean Orchestia in intermolt: recognition of two distinct segments. J Morphol 165:261–284

    Google Scholar 

  • Guary JC, Negrel R (1981) Calcium phosphate granules: a trap for transuranic and iron in crab hepatopancreas. Comp Biochem Physiol 68:423–427

    Google Scholar 

  • Hopkin SP, Nott JA (1979) Some observations on concentrically structured, intracellular granules in the hepatopancreas of the shore crab Carcinus moenas (L.). J Mar Biol Ass UK 59:867–877

    Google Scholar 

  • Kapur SP, Gibson MA (1968) A histochemical study of the development of the mantle-edge and shell in the freshwater gastropod, Helisoma duryi eudiscus (Pilsbry). Canad J Zool 46:481–491

    Google Scholar 

  • Larsen WJ (1977a) Gap junctions and hormone action. In: BL Gupta, RB Moreton, JL Oschman, BJ Wall (Eds) Transport of ions and water in animals. Academic Press, New York Eondon, pp 333–361

    Google Scholar 

  • Larsen WJ (1977b) Structural diversity of gap junctions. A review. Tissue Cell 9:373–394

    CAS  PubMed  Google Scholar 

  • Merk FB, Botticelli CR, Albright JT (1972) An intercellular response to estrogen by granulosa cells in the rat ovary; an electron microscopic study. Endocrinology 90:992–1007

    Google Scholar 

  • Merk FB, Albright JT, Botticelli CR (1973) The fine structure of granulosa cell nexuses in rat ovarian follicles. Anat Rec 175:107–125

    Google Scholar 

  • Meyran JC, Graf F, Nicaise G (1984) Calcium pathway through a mineralizing epithelium in the crustacean Orchestia in premolt: ultrastructural cytochemistry and X-ray microanalysis. Tissue Cell 16:269–286

    Google Scholar 

  • Neff JM (1972) Ultrastructure of the outer epithelium of the mantle in the clam Mercenaria mercenaria in relation to calcification of the shell. Tissue Cell 4:591–600

    Google Scholar 

  • Petit H, Davis WL, Jones RG, Hagler HK (1980) Morphological studies on the calcification process in the fresh-water mussel Amblema. Tissue Cell 12:13–28

    Google Scholar 

  • Shimizu M, Yamada J (1976) Light and electron microscope observations of the regenerating test in the sea urchin, Strongylocentrotus intermedius. In: N Watabe, KM Wilbur (Eds) Mechanisms of mineralization in the invertebrates and plants, University of South Carolina Press, pp 261–281

  • Simkiss K (1974) Calcium translocation by cells. Endeavour 33:119–124

    Google Scholar 

  • Simkiss K (1976a) Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30:423–444

    Google Scholar 

  • Simkiss K (1976b) Cellular aspects of calcification. In: N Watabe, KM Wilbur (Eds) Mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, pp 1–32

  • Simkiss K (1979) Metal ions in cells. Endeavour 3:2–6

    Google Scholar 

  • Tompa AS, Watabe N (1976) Calcified arteries in a gastropod. Calcif Tiss Res 22:159–172

    Google Scholar 

  • Towe KM (1972) Invertebrate shell structure and the organic matrix concept. Biomineralization 4:2–14

    Google Scholar 

  • Travis DF (1957) The molting cycle of the spiny lobster Palinurus argus Latreille. VI. Post-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol Bull 113:451–479

    Google Scholar 

  • Ueno M (1980) Calcium transport in crayfish gastrolith disc: morphology of gastrolith disc and ultrahistochemical demonstration of calcium. J Exptl Zool 213:161–171

    Google Scholar 

  • Watabe N, Blackwelder PL (1980) Ultrastructure and calcium localization in the mantle epithelium of the freshwater gastropod Pomacea paludosa during shell regeneration. In: M Omori, N Watabe (Eds) The mechanism of biomineralization in animals and plants. Tokai Univ Press Tokyo, pp 131–144

    Google Scholar 

  • Watabe N, Meenakashi VR, Blackwelder PL, Kurtz EM, Dunkelberger DG (1976) Calcareous spherules in the gastropod, Pomacea Paludosa. In: N Watabe, KM Wilbur (Eds) Mechanisms of Mineralization in the Invertebrates and Plants. University of South Carolina Press, pp 283–308

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, F., Meyran, JC. Calcium reabsorption in the posterior caeca of the midgut in a terrestrial crustacean, Orchestia cavimana . Cell Tissue Res. 242, 83–95 (1985). https://doi.org/10.1007/BF00225566

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225566

Key words

Navigation