Skip to main content
Log in

Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro

II. Differentiation of LH cells

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The objective of this in-vitro study was to examine whether the diencephalic floor or the mesenchyme is involved in differentiation of LH cells in the developing rat adenohypophysis. Overall growth of the adenohypophysial tissue was retarded when the adenohypophysial primordium was cultivated after enzymatic removal of the diencephalic floor on days 11.5 and 12.5 of gestation. This malgrowth was more marked when the brain was separated on day 11.5; most expiants retained a simple cystiform structure that consisted of a few layers of undifferentiated cells. Removal of the brain also caused a highly significant decrease (P < 0.001) in the number of immunoreactive LH cells, if it was performed on day 11.5 but not day 12.5. Mesenchyme had little effect on the adenohypophysial growth or the number of immunopositive cells. Cultivation of the adenohypophysial primordium with the diencephalic floor resulted in the appearance of many immunoreactive LH cells. The number of LH cells significantly decreased, however, when the co-cultivated brain completely surrounded the adenohypophysial tissue.

These results indicate that in 11.5-day-old fetal rats the diencephalic floor is indispensable for the initial proliferation of adenohypophysial primordial cells and for the early determinating process of LH cells. Once determined, the development of LH cells may proceed without the surrounding tissues. The cytodifferentiation seems to be rather inhibited when in contact with the brain. The significance of the intimate spatial relationship between developing LH cells and the surrounding mesenchyme is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwell WJ (1935) Differentiation and function of heterotopic autoplastic transplants of the amphibian hypophysis. Proc Soc Exp Biol Med 33:224–226

    Google Scholar 

  • Atwell WJ (1937) Functional transplants of the primordium of the epithelial hypophysis in amphibia. Anat Rec 68:431–447

    Google Scholar 

  • Atwell WJ, Taft JW (1940) Functional transplants of epithelial hypophysis in three species of Amblystoma. Proc Soc Exp Biol Med 44:53–55

    Google Scholar 

  • Begeot M, Dupouy JP, Dubois MP, Dubois PM (1981) Immunocytological determination of gonadotropic and thyrotropic cells in fetal rat anterior pituitary during normal development and under experimental conditions. Neuroendocrinology 32:285–294

    Google Scholar 

  • Begeot M, Dubois MP, Dubois PM (1982) Comparative study in vivo and in vitro of the differentiation of immunoreactive corticotropic cells in fetal rat anterior pituitary. Neuroendocrinology 35:255–264

    Google Scholar 

  • Begeot M, Hemming FJ, Martinat N, Dubois MP, Dubois PM (1983a) Gonadotropin releasing hormone (GnRH) stimulates immunoreactive lactotrope differentiation. Endocrinology 112:2224–2226

    Google Scholar 

  • Begeot M, Dubois MP, Dubois PM (1983b) Comparative study in vivo and in vitro of the differentiation of immunoreactive gonadotropic cells in fetal rat anterior pituitary. Neuroendocrinology 37:52–58

    Google Scholar 

  • Begeot M, Morel G, Rivest RW, Aubert ML, Dubois MP, Dubois PM (1984) Influence of gonadoliberin on the differentiation of rat gonadotrophs: an in vivo and in vitro study. Neuroendocrinology 38:217–225

    Google Scholar 

  • Blount RF (1932) Transplantation and extirpation of the pituitary rudiment and the effects upon pigmentation in the urodele embryo. J Exp Zool 63:113–142

    Google Scholar 

  • Chang CY (1957) Hypothalectomy in Rana pipiens neurulae. Anat Rec 128:531–532

    Google Scholar 

  • Driskoll WT, Eakin RM (1955) The effects of sucrose on amphibian development with special reference to the pituitary body. J Exp Zool 129:149–176

    Google Scholar 

  • Etkin W (1935) Effects of multiple pituitary primordia in the tadpole. Proc Soc Exp Biol Med 32:1653–1655

    Google Scholar 

  • Etkin W (1958a) Independent differentiation in components of the pituitary complex in the wood frog. Proc Soc Exp Biol Med 97:388–393

    Google Scholar 

  • Etkin W (1958b) Embryonic determination of the adenohypophysis in the wood frog, R. sylvatica. Anat Rec 131:548

    Google Scholar 

  • Ferrand R (1969) Influence inductrice exercée par le plancher encéphalique sur l'ébauche adénohypophysaire aux jeunes stades du développement de l'embryon de poulet. C R Acad Sci (Paris) 268:550–553

    Google Scholar 

  • Ferrand R (1972) Etude expérimentale de facteurs de la différenciation cytologique de l'adénohypophyse chez l'embryon de poulet. Arch Biol (Liège) 83:297–371

    Google Scholar 

  • Ferrand R, Le Douarin N (1968) Différenciation de tissue adénohypophysaire à partir de la poche de Rathke prélevée après le stade de la détermination chez l'embryon de poulet et mise au contact de divers mésenchymes. C R Soc Biol 162:2215–2218

    Google Scholar 

  • Ferrand R, Nanot J (1968) Différenciation de la poche de Rathke isolée de l'ébauche nerveuse de l'hypophyse et associée à un mésenchyme hétérologue chez la souris. C R Soc Biol 162:983–986

    Google Scholar 

  • Gash D, Ahmad N, Weiner R, Schechter J (1980) Development of presumptive mammotrophs in isografts is dependent on the endocrine state of the host. Endocrinology 106:1246–1252

    Google Scholar 

  • Gross DS, Baker BL (1979) Developmental correlation between hypothalamic gonadotropin-releasing hormone and hypophysial luteinizing hormone. Am J Anat 154:1–10

    Google Scholar 

  • Hanaoka Y (1967) The effects of posterior hypothalectomy upon the growth and metamorphosis of the tadpole of Rana pipiens. Gen Comp Endocrinol 8:417–431

    Google Scholar 

  • Kusakabe M, Sakakura T, Sano M, Nishizuka Y (1984) Early development of mouse anterior pituitary: role of mesenchyme. Dev Growth Differ 26:263–271

    Google Scholar 

  • Le Douarin G, Ferrand R (1968) Différenciation fonctionelle de l'ébauche épithéliale de l'adénohypophyse isolée du plancher encéphalique: activité thyréotrope. C R Acad Sci (Paris) 266:697–699

    Google Scholar 

  • Le Douarin N, Ferrand R, Le Douarin G (1967) La différenciation de l'ébauche épithéliale de l'hypophyse séparée du plancher encéphalique et placée dans des mésenchymes hétérologues. C R Acad Sci (Paris) 264:3027–3029

    Google Scholar 

  • Lieberman ME, Slabaugh MB, Rutledge JJ, Gorski J (1983) The role of estrogen in the differentiation of prolactin producing cells. J Steroid Biochem 19:275–281

    Google Scholar 

  • Nemeskéry A, Németh A, Sétáló G, Vigh S, Halász B (1976) Cell differentiation of the fetal rat anterior pituitary in vitro. Cell Tissue Res 170:263–273

    Google Scholar 

  • Sétáló G, Nakane PK (1976) Functional differentiation of the fetal anterior pituitary cells in the rat. Endocrinol Exp 10:155–166

    Google Scholar 

  • Sobel H (1958) The behaviour in vitro of dissociated embryonic pituitary tissue. J Embryol Exp Morphol 6:518–526

    Google Scholar 

  • Sternberger LH, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Watanabe YG (1982a) Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. I. Differentiation of adrenocorticotropes. Cell Tissue Res 227:257–266

    Google Scholar 

  • Watanabe YG (1982b) An organ culture study on the site of determination of ACTH and LH cells in the rat adenohypophysis. Cell Tissue Res 227:267–275

    Google Scholar 

  • Watanabe YG, Daikoku S (1976) Immunohistochemical study on adenohypophysial primordia in organ culture. Cell Tissue Res 166:407–412

    Google Scholar 

  • Watanabe YG, Daikoku (1979) An immunohistochemical study on the cytogenesis of adenohypophysial cells in fetal rats. Dev Biol 68:557–567

    Google Scholar 

  • Watanabe YG, Matsumura H, Daikoku S (1973) Electron microscopic study of rat pituitary primordium in organ culture. Z Zellforsch 146:453–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y.G. Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. Cell Tissue Res. 242, 49–55 (1985). https://doi.org/10.1007/BF00225562

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225562

Key words

Navigation