Skip to main content
Log in

Effects of ozone on organic acids in needles of Norway spruce and Scots pine

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

The effect of ozone, needle age, and season on the pH of homogenate and acid contents of Scots pine and Norway spruce needles is presented. In addition enzyme activities of cytochrome C-oxidase (cyt. C-ox), phosphoenolpyruvate-carboxylase (PEPC), shikimic acid-dehydrogenase (SHDH) and malate-dehydrogenase (MDH) were measured in Scots pine needles. In freshly sprouted spruce needles the level of quinic acid is high and the pH of the needle homogenate is low. Shikimic acid starts at low levels, increases with increasing needle age and becomes dominant, whereas the quinic acid content decreases. Malic acid has a marked seasonal trend; no trend was found in citric acid. Ozone (200 μg/m3) decreased shikimic acid and quinic acid, whereas pH, malic acid and citric acid increased. Ozone (100 μg/m3) had a similar effect, except in the current-year spruce needles. In Scots pine needles ozone led to increased enzymatic activities of cyt. C-ox, PEPC and SHDH, and a decrease in the activity of MDH. This effect was more pronounced in summer than in autumn, but the visible damage was greater in autumn. These effects can be found with other stresses and are not specific for ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor JS, Cumming JR (1988) Low levels of ozone increase bean leaf maintenance respiration. Can J Bot 66: 724–726

    Google Scholar 

  • Barnes RL (1972) Effects of chronic exposure to ozone on photosynthesis and respiration of pines. Environ Pollut 3: 133–138

    Google Scholar 

  • Becker TW, Fock HP (1986) Effects of water stress on the gas exchange, the activities of some enzymes of carbon and nitrogen metabolism, and on the pool sizes of some organic acids in maize leaves. Photosynthesis Research 8: 175–181

    Google Scholar 

  • Bleuler P, Landolt W (1988) Luftbelastung 1987 im Raume Birmensdorf. Schweiz Z Forstwes 139: 631–636

    Google Scholar 

  • Bleuler P, Landolt W (1989) Luftbelastung 1988 im Raume Birmensdorf. Schweiz Z Forstwes 140: 641–646

    Google Scholar 

  • Bucher JB, Landolt W, Bleuler P (1986) Ozonmessungen auf dem Rötiboden ob Gösehenen UR. Schweiz Z Forstwes 137: 607–621

    Google Scholar 

  • Davis DD, Wood FA (1972) The relative susceptibility of eighteen coniferous species to ozone. Phytopathology 62: 14–19

    Google Scholar 

  • DeGroote D, Kennedy RA (1977) Photosynthesis in Elodea canadensis Michx. four-carbon acid synthesis. Plant Physiol 59: 1133–1135

    Google Scholar 

  • Dittrich P, Kandier O (1971) Einfluß der Jahreszeiten auf Bildung und Umsatz von Phenolkörpern in der Fichte [Picea abies (L.) Karst.]. Ber Dtsch Bot Ges 84: 465–472

    Google Scholar 

  • Dittrich P, Senser M, Frielinghaus J (1989) Vergleichende Untersuchung der Dynamik von Chinasäure und Shikimisäure im Nadelstoffwechsel von Fichten [Picea abies (L.) Karst.] im Zusammenhang mit dem “Waldsterben”. Forstw Cbl 108: 103–110

    Google Scholar 

  • Dizengremel P, Citerne A (1988) Air pollutant effects on mitochondria and respiration. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air Pollutants and Plant Metabolism. Elsevier, London, pp 169–188

    Google Scholar 

  • Grill D, Lindner W, Jäger H-J (1980) Säuren in SO2-belasteten und von Chrysomyxa abietis befallenen Fichtennadeln. Phyton (Horn, Austria) 20: 65–72

    Google Scholar 

  • Grünhage L, Jäger H-J (1982) Kombinationswirkung von SO2 und Cadmium auf Pisum sativum L. 2. Enzyme, freie Aminosäuren, organische Säuren und Zucker. Angew Botanik 56: 167–178

    Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985) Effects of Photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. (Ecological studies, vol 52) Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Lance C, Rustin P (1984) The central role of malate in plant metabolism. Physiol Veg 22: 625–641

    Google Scholar 

  • Landolt W, Pfenninger I, Lüthy-Krause B (1989) The effect of ozone and season on the pool sizes of cyclitols in Scots pine (Pinus syivestris). Trees 3: 85–88

    Google Scholar 

  • Libera W, Ziegler I, Ziegler H (1975) The action of sulfite on the HCO3-fixation and the fixation pattern of isolated chloroplasts and leaf tissue slices. Z Pflanzenphysiol 74: 420–433

    Google Scholar 

  • Lindner W, Grill D (1978) Säuren in Koniferennadeln. Phyton (Horn, Austria) 18: 137–144

    Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentrations in exudates from P-sufficient and P-stressed Medicago saliva L. seedlings. Plant Physiol 85: 315–317

    Google Scholar 

  • Martin P, Bytnerowicz A, Thorstenson YR (1988) Effects of air pollutants on the composition of stable carbon isotopes, δ13C, of leaves and wood, and on leaf injury. Plant Physiol 88: 218–223

    Google Scholar 

  • Melzer E, O'Leary MH (1987) Anaplerotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiol 84: 58–60

    Google Scholar 

  • Mousdale DM, Coggins JR (1985) Subcellular localisation of the common shikimate-pathway enzymes in Pisum sativum L. Planta 163: 241–249

    Google Scholar 

  • Oechssler G (1968) Jahreszeitliche Schwankungen des Gehaltes an organischen Säuren in den Nadeln von Pseudotsuga menziesii (Mirb.) Franco, Picea abies (L.) Karst. und Larix decidua Mill. Z Pflanzenphysiol 59: 213–225

    Google Scholar 

  • Pell EJ, Brennan E (1973) Changes in respiration, photosynthesis, adenosine 5′-triphosphate, and total adenylate content of ozonated pinto bean foliage as they relate to symptom expression. Plant Physiol 51: 378–381

    Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81: 597–602

    Google Scholar 

  • Pierre M, Queiroz O (1981) Enzymic and metabolic changes in bean leaves during continuous pollution by subnecrotic levels of SCh. Environ Pollut 25: 41–51.

    Google Scholar 

  • Pierre M, Queiroz O (1982) Modulation by leaf age and SCh concentration of the enzymic response to subnecrotic SCh pollution. Environ Pollut 82: 209–217

    Google Scholar 

  • Queiroz O (1988) Air pollution, gene expression and post-translational enzyme modifications. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollutants and plant metabolism. Elsevier, London, S, pp 238–254

    Google Scholar 

  • Reich PB (1983) Effects of low concentration of O3 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73: 291–296

    Google Scholar 

  • Sarkar SK, Malhotra SS (1979) Effects of SO2 on organic acid content and malate dehydrogenase activity in jack pine needles. Biochem Physiol Pflanzen 174: 438–445

    Google Scholar 

  • Scholz F, Stephan BR (1974) Physiologische Untersuchungen über die unterschiedliche Resistenz von Pinus sylvestris gegen Lophodermium pinastri. Eur J For Path 4: 118–124

    Google Scholar 

  • Schöpf R (1986) The effect of secondary needles compounds on the development of phytophagous insects. For Ecol Management 15: 55–64

    Google Scholar 

  • Skye E (1968) Lichens and air pollution. A study of cryptogamic epiphytes and environment in the Stockholm region. Acta Phytogeogr Suec 52: 8–123

    Google Scholar 

  • Still M, Steup M (1985) Starch and sucrose degradation. In: Douce R, Day DA (eds) Higher plant cell respiration. (Encyclopaedia of plant physiology, vol 18) Springer Berlin Heidelberg New York, pp 347

    Google Scholar 

  • Thind SK, Malik CP (1988) Carboxylation and related reactions in wheat seedlings under osmotic stress. Plant Physiol Biochem 15: 58–63

    Google Scholar 

  • Timpa LD, Burke JJ, Quisenberry JE, Wendt CW (1986) Effects of water stress on the organic acid and carbohydrate compositions of cotton plants. Plant Physiol 82: 724–728

    Google Scholar 

  • Tingey DT, Fites RC, Wickliff C (1975) Activity changes in selected enzymes from soybean leaves following ozone exposure. Physiol Plant 33: 316–320

    Google Scholar 

  • Tingey DT, Fites RC, Wickliff C (1976a) Differential foliar sensitivity of soybean cultivars to ozone associated with differential enzyme activities. Physiol Plant 37: 69–72

    Google Scholar 

  • Tingey DT, Wilhour RG, Standley C (1976b) The effect of chronic ozone exposures on the metabolite content of Ponderosa pine seedlings. Forest Sci 22: 234–241

    CAS  Google Scholar 

  • Weimar M, Rothe GM (1986) Preparation of extracts from mature spruce needles for enzymatic analysis. Physiol Plant 69: 692–698

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luethy-Krause, B., Pfenninger, I. & Landolt, W. Effects of ozone on organic acids in needles of Norway spruce and Scots pine. Trees 4, 198–204 (1990). https://doi.org/10.1007/BF00225316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225316

Key words

Navigation