Skip to main content
Log in

Regulation of the antiviral and anticellular activities of interferon by exogenous double-stranded RNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The effects of double-stranded RNA (dsRNA) on interferon (IFN)-induced antiviral and anticellular activities was investigated by introducing poly(I)-poly(C) into mouse L-cells. Coprecipitation of dsRNA with calcium phosphate enabled its efficient penetration into cells in culture. Rate of cellular protein synthesis was inhibited by dsRNA only in cultures pretreated with IFN. Moreover, the anticellular effect of IFN, as measured by the inhibition of cell DNA synthesis, was also enhanced by dsRNA. The kinetics of dsRNA-mediated inhibition of protein synthesis were relatively slow as compared with the inhibitory effect of 2′-5′oligoadenylic acid (2′5′A), which was also introduced into cells by the calcium phosphate coprecipitation technique.

To analyze the effects of dsRNA on the antiviral state induced by IFN, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMC), replications were followed by measuring viral-specific RNA synthesis in the cell. Introduction of dsRNA after the infection had no effect on VSV and EMC replication in control cells, and it enhanced, to a small extent, the antiviral state of cells pretreated with IFN. In contrast, introduction of 2′5′A into virus-infected cells inhibited VSV and EMC replications regardless of IFN pretreatment.

This work demonstrated that the role of dsRNA in regulating the antiviral and anticellular activities of IFN could be studied by introducing exogenous dsRNA into cells in culture by the calcium phosphate coprecipitation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2′5′A:

triphosphoadenyl (2′5′) adenylyl (2′-5′) adenosine

Pi:

the interferon-induced 67 000 dalton protein

RNase F:

the 2′5′A-dependent ribonuclease

Hepes:

4-(2-hydroxy)-1-piperazineethane sulfonic acid

References

  1. Hovanessian, A. G., Brown, R. E. and Kerr, I. M., 1977. Nature (London) 268: 537–540.

    Google Scholar 

  2. Schmidt, A., Zilberstein, A., Shulman, L., Federman, P., Berissi, H. and Revel, M., 1978. FEBS Lett. 95: 257–264.

    Google Scholar 

  3. Baglioni, C., Minks, M. A. and Maroney, P. A., 1978. Nature (London) 273: 684–686.

    Google Scholar 

  4. Slattery, E., Ghosh, N., Samanta, H. and Lengyel, P., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 4778–4782.

    Google Scholar 

  5. Farrell, P. J., Sen, G. C., Dubois, M. F., Ratner, L., Slattery, E. and Lengyel, P., 1978. Proc. Natl. Acad. Sci. U.S.A. 75:5893–5897.

    Google Scholar 

  6. Kimchi, A., Shulman, L., Schmidt, A., Chernajovsky, Y., Fradin, A. and Revel, M., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 3208–3212.

    Google Scholar 

  7. Minks, M. A., Benvin, S., Maroney, P. A. and Baglioni, C., 1979. J. Biol. Chem. 254: 5058–5064.

    Google Scholar 

  8. Kaempfer, R., Israeli, R., Rosen, H., Knoller, S., Zilberstein, A., Schmidt, A. and Revel, M., 1979. Virology 99: 170–173.

    Google Scholar 

  9. Clemens, M. J. and Williams, B. R. G.,1978. Cell 13: 565–572.

    Google Scholar 

  10. Wood, J. N. and Hovanessian, A. G., 1979. Nature 282: 74–76.

    Google Scholar 

  11. Epstein, D. A., Czarniecki, C. W., Jacobsen, H., Friedman, R. M. and Panet, A., 1981. Eur. J. Biochem. 118: 9–15.

    Google Scholar 

  12. Czarniecki, C. W., Sreevalsan, T., Friedman, R. M. and Panet, A., 1981. J. Virol. 37: 827–831.

    Google Scholar 

  13. Knight, M., Cayley, P. J., Silverman, R. H., Werschner, D. H., Gilbert, C. S., Brown, R. E. and Kerr, I. M., 1980. Nature 288: 189–192.

    Google Scholar 

  14. Stewart, W. E., DeClercq, E., Billiau, A., Desmyter, J. and DeSomer, P., 1972. Proc. Natl. Acad. Sci. U.S.A. 69: 1851–1854.

    Google Scholar 

  15. Stewart, W. E., DeClerq, E. and DeSomer, P., 1973. J. Gen. Virol. 18: 237–246.

    Google Scholar 

  16. Kerr, I. M., Brown, R. E. and Ball, L. A., 1974. Nature 250: 57–59.

    Google Scholar 

  17. Graham, F. L. and Van der Eb, A. J., 1973. Virology 52: 456–467.

    Google Scholar 

  18. Paucker, K., Berman, B. J., Golgher, R. R. and Stancek, D., 1970. J. Virol. 5: 145–152.

    Google Scholar 

  19. Panet, A., Czarniecki, C. W., Falk, H. and Friedman, R. M., 1981. Virology 114: 567–572.

    Google Scholar 

  20. Hovanessian, A. G., Wood, J., Meurs, E. and Montagnier, L., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 3261–3265.

    Google Scholar 

  21. Hovanessian, A. G., Meurs, E. and Montagnier, L., 1981. J. Interferon Res. 1: 179–190.

    Google Scholar 

  22. Cooper, J. A., Morser, J., Colby, M. S. and Burke, D. C., 1979. J. Gen. Virol. 43: 553–561.

    Google Scholar 

  23. Cooper, J. A. and Morser, J., 1979. J. Gen. Virol. 43: 563–569.

    Google Scholar 

  24. Gupta, S. L., 1979. J. Virol. 29: 301–311.

    Google Scholar 

  25. Nilsen, T. W., Maroney, P. A. and Baglioni, C., 1981. J. Biol. Chem. 256: 7806–7811.

    Google Scholar 

  26. Wertz, G. W., 1978. Virology 85: 271–285.

    Google Scholar 

  27. Bishop, J. M. and Levintow, L., 1971. Prog. Med. Virol. 13: 1–82.

    Google Scholar 

  28. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panet, A. Regulation of the antiviral and anticellular activities of interferon by exogenous double-stranded RNA. Mol Cell Biochem 52, 153–160 (1983). https://doi.org/10.1007/BF00224924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224924

Keywords

Navigation