Skip to main content
Log in

Sequence specificities in the interactions of chemicals and radiations with DNA

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Sequence specificities in the interactions of chemicals and radiations with DNA are reviewed. Emphasis is placed on information which has been obtained by adapting DNA sequencing techniques to the detection of DNA damage and modifications. The actions of anti-tumor drugs, non-covalent DNA binders and UV irradiation are discussed in terms of both modifications induced in DNA and the subsequent response of DNA polymerase and repair enzymes. Particular attention is paid to the evidence for ‘sequence-specific’ interactions of these agents with DNA. It is concluded that while most agents exhibit ‘warm’ or even ‘hot’ spots in their interactions with DNA there is not, as yet, compelling evidence for extreme selectivity down to say the gene level in their actions. There does, however, appear to be some affinity, particularly in the case of non-covalent binders, for certain tertiary structures rather than primary sequences per se. In addition, both misincorporation opposite DNA damage and the bypass of damage by polymerases are important phenomena which, to some extent, exhibit sequence specificities. The idea is advanced that DNA structures such as hairpins or cruciforms maybe important in vivo targets for many agents giving rise to specific biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spiro TG (ed): Nucleic Acid-Metal Ion Interactions. John Wiley, New York, 1980.

    Google Scholar 

  2. Kornberg A: DNA Replication. Freeman, San Francisco, 1980.

    Google Scholar 

  3. Cold Spring Harbor Symposium, Vol XLVII (1): Structures of DNA. 1982.

  4. Gamow G: Nature 173:318, 1954.

    Google Scholar 

  5. Baguley BC: Mol Cell Biochem 43:167–181, 1982.

    Google Scholar 

  6. Waring MJ: Ann Rev Biochem 50:159–192, 1981.

    Google Scholar 

  7. Tritton TR, Yee G: Science 217:248–250, 1982.

    Google Scholar 

  8. Rogers KE, Carr BI, Tokes ZA: Cancer Res 43:2741–2748, 1983.

    Google Scholar 

  9. Roberts JJ: Adv Radiat Biol 7:211–436, 1978.

    Google Scholar 

  10. Wells RD, Larson JE: J Mol Biol 49:319–342, 1970.

    Google Scholar 

  11. Sobell HM: In: Sarma RH (ed), Nucleic Acid Geometry and Dynamics. Pergamon, New York, 1980, pp 289–323.

    Google Scholar 

  12. Lerman LS: J Mol Biol 3:18–30, 1961.

    CAS  PubMed  Google Scholar 

  13. Takusagawa F, Dabrow M, Neidle S, Berman HM: Nature 296:466–469, 1982.

    Google Scholar 

  14. Wilson WD, Jones RL: Adv Pharm Chemother 18:177–222, 1981.

    Google Scholar 

  15. Patel DJ: Ace Chem Res 12:118–100, 1979.

    Google Scholar 

  16. Wilkins RJ: Anal Biochem (submitted).

  17. Maxam AM, Gilbert W: Proc Natl Acad Sci USA 74:560–564, 1977.

    Google Scholar 

  18. Sanger F, Nicklen S, Coulson AR: Proc Natl Acad Sci USA 74:5463–5467, 1977.

    CAS  PubMed  Google Scholar 

  19. Haseltine WA, Lindon CP, D'Andrea AD, Johnsrud L: In: Grossman L, Moldave K (eds), Methods Enzymol, 65. Academic Press, New York, 1980, pp 235–248.

    Google Scholar 

  20. Moore PD, Strauss BS: Nature 278:664–666, 1979.

    Google Scholar 

  21. Hart RW, Setlow RB, Woodhead AD: Proc Natl Acad Sci USA 74:5574–5578.

  22. Brash DE, Haseltine WA: Nature 298:189–192, 1982.

    Google Scholar 

  23. Haseltine WA, Gordon LK, Lindon CP, Grafstrom RH, Shaper NL, Grossman L: Nature 285:634–641, 1980.

    Google Scholar 

  24. Haseltine WA, Gordon LK: J Biol Chem 256:6608–6616, 1981.

    Google Scholar 

  25. Moore PD, Bose KK, Rabkin SD, Strauss BS: Proc Natl Acad Sci USA 78:110–114, 1981.

    Google Scholar 

  26. Wilkins RJ: Nucleic Acids Res 10:7273–7282, 1982.

    Google Scholar 

  27. Bridges BA: In: Hanawalt PC, Friedberg EC, Fox CF (eds): DNA Repair Mechanisms. Academic Press, New York, 1978, pp 341–344.

    Google Scholar 

  28. Rabkin SD, Moore PD, Strauss BS: Proc Natl Acad Sci USA 80:1541–1545, 1983.

    Google Scholar 

  29. Sagher D, Strauss BS: Biochemistry 22:4518–4526, 1983.

    Google Scholar 

  30. D'Andrea AD, Haseltine WA: Proc Natl Acad Sci USA 75:3608–3612, 1978.

    Google Scholar 

  31. Singer B, Fraenkel-Conrat H: Biochemistry 4:226–233, 1965.

    Google Scholar 

  32. Lown JW, Sim S-K: Biochem Biophys Res Commun 77:1150–1157, 1977.

    Google Scholar 

  33. Galas DJ, Schmitz A: Nucleic Acids Res 5:3157–3170, 1978.

    Google Scholar 

  34. Van Dyke MW, Hertzberg RP, Dervan PB: Proc Natl Acad Sci USA 79:5470–5474, 1982.

    Google Scholar 

  35. Van Dyke MW, Dervan PB: Nucleic Acids Res 11:5555–5567, 1983.

    Google Scholar 

  36. Schultz PG, Dervan PB: Proc Natl Acad Sci USA 80:6834–6837, 1983.

    Google Scholar 

  37. Schultz PG, Dervan PB: J Biomol Struct Dynamics (in press).

  38. Du Vernay VH, Pachter JA, Crooke ST: Biochemistry 18:4024–4029, 1979.

    Google Scholar 

  39. Gabbay EJ, Grier D, Fingerle RE, Reinor R, Levy R, Pearce SE, Wilson WD: Biochemistry 15:2062–2070, 1976.

    Google Scholar 

  40. Berlin V, Haseltine WA: J Biol Chem 256:4747–4756, 1981.

    CAS  PubMed  Google Scholar 

  41. Zwelling LA, Michaels S, Erickson LC, Ungerleider RS, Nichols M, Kohn KW: Biochemistry 20:6553–6563, 1981.

    Google Scholar 

  42. Ralph RK, Marshall B, Darkin S: TIBS 8:212–214, 1983.

    Google Scholar 

  43. Filipinski J: FEBS Lett 159:6–12, 1983.

    Google Scholar 

  44. Grunberg SM, Haseltine WA: Proc Natl Acad Sci USA 77:6546–6550, 1980.

    Google Scholar 

  45. Randerath K, Reddy MV, Gupta RC: Proc Natl Acad Sci USA 78:6126–6129, 1981.

    Google Scholar 

  46. Moore PD, Rabkin SD, Strauss BS: Nucleic Acids Res 8:4473–4484, 1980.

    Google Scholar 

  47. Moore PD, Rabkin SD, Osborn AL, King CM, Strauss BS: Proc Natl Acad Sci USA 79:7166–7170, 1982.

    Google Scholar 

  48. Royer-Pokora B, Gordon LK, Haseltine WA: Nucleic Acids Res 9:4595–4609, 1981.

    Google Scholar 

  49. Pietle JG, Hearst JE: Proc Natl Acad Sci USA 80:5540–5544, 1983.

    Google Scholar 

  50. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ: The Molecular Basis of Antibiotic Action (2nd ed). Wiley, London, 1981.

    Google Scholar 

  51. Baguley BC, Nash R: Eur J Cancer 17:671–679, 1981.

    Google Scholar 

  52. Robbie M, Wilkins RJ: Chem Biol lnteract 49:189–209, 1984.

    Google Scholar 

  53. Martin RF, Holmes N: Nature 302:452–454, 1983.

    Google Scholar 

  54. Muller W, Crothers DM: J Mol Biol 35:251–290, 1968.

    Google Scholar 

  55. Van Dyke MW, Dervan PB: Biochemistry 22:2373–2377, 1983.

    Google Scholar 

  56. Neidle S: Nature 292:292–293, 1981.

    Google Scholar 

  57. Zimmer C, Mark C, Scheider C, Guschlbauer W: Nucleic Acids Res 6:2831–2837, 1979.

    Google Scholar 

  58. Dickerson RE: J Mol Biol 166:419–441, 1983.

    Google Scholar 

  59. Muller UR, Fitch WM: Nature 298:582–585, 1982.

    Google Scholar 

  60. Robbie M: Thesis, University of Otago, Dunedin 1983.

    Google Scholar 

  61. Sinden RR, Broyles SS, Pettijohn DE: Proc Natl Acad Sci USA 80:1797–1801, 1983.

    Google Scholar 

  62. Gellert M, O'Dea MH, Mizuuchi K: Proc Natl Acad Sci USA 80:5545–5549, 1983.

    Google Scholar 

  63. Glickman BW, Ripley LS: Proc Natl Acad Sci USA 81:512–516, 1984.

    Google Scholar 

  64. Weintraub H: Cell 32:1191–1203, 1983.

    Google Scholar 

  65. Feigon J, Denny WA, Leupin W, Kearns DR: Biochemistry (in press).

  66. Little JW, Mount DW: Cell 29:11–22, 1982.

    Google Scholar 

  67. Sirover MA,Loeb LA: Proc Natl Acad Sci USA 73:2331–2335, 1976.

    Google Scholar 

  68. Shearman CW, Loeb LA: J Biol Chem 258:4477–4484, 1983.

    Google Scholar 

  69. Shearman CW, Forgette MM, Loeb LA: J Biol Chem 258:4485–4491, 1983.

    Google Scholar 

  70. Ogata R, Gilbert W: Proc Natl Acad Sci USA 74:4973–4976, 1977.

    Google Scholar 

  71. Ptashne M, Jeffery A, Johnson AD, Maurer R, Meyer BJ, Pabo CO, Roberts TM, Sauer RT: Cell 19:1–11, 1980.

    Google Scholar 

  72. Sadler JR, Sasmor H, Bete JL: Proc Natl Acad Sci USA 80:6785–6789, 1983.

    Google Scholar 

  73. Sluyser M: TIBS 8:236–238, 1983.

    Google Scholar 

  74. Schultz PG, Taylor JS, Dervan PB: J Am Chem Soc 104:6861–6863, 1982.

    Google Scholar 

  75. Chaires JB, Dattagupta N, Crothers DM: Biochemistry 22:284–292, 1983.

    Google Scholar 

  76. Wu H-M: Biochemistry 19:626–634, 1980.

    Google Scholar 

  77. Hamada H, Kakunaga T: Nature 298:396–398, 1982.

    Google Scholar 

  78. Lundquist RC, Olivera BM: Cell 31:53–60, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkins, R.J. Sequence specificities in the interactions of chemicals and radiations with DNA. Mol Cell Biochem 64, 111–126 (1984). https://doi.org/10.1007/BF00224768

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224768

Keywords

Navigation