Skip to main content
Log in

The restructuring of the flagellar base and the flagellar necklace during spermatogenesis of Ephestia kuehniella Z. (Pyralidae, Lepidoptera)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius BA, Franzén Å (1971) The spermatozoon of the jellyfish Nausithoë. J Ultrastruct Res 37:186–199

    Google Scholar 

  • Alkon DL (1983) Sensory function of cilia. J Submicrosc Cytol 15:173–176

    Google Scholar 

  • Andrews D, Nelson DL (1979) Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta 550:174–187

    Google Scholar 

  • Azevedo C (1981) The fine structure of the spermatozoon of Patella lusitanica (Gastropoda: Prosobranchia), with special reference to acrosome formation. J Submicrosc Cytol 13:47–56

    Google Scholar 

  • Azevedo C, Lobo-Da-Cunha A, Oliveira E (1985) Ultrastructure of the spermatozoon in Gibbula umbilicalis (Gastropoda, Prosobranchia), with special reference to acrosomal formation. J Submicrosc Cytol 17:609–614

    Google Scholar 

  • Bardele CF (1981) Functional and phylogenetic aspects of the ciliary membrane: A comparative freeze-fracture study. Biosystems 14:403–421

    Google Scholar 

  • Bergstrom BH, Henley C (1973) Flagellar necklaces: Freeze-etch observations. J Ultrastruct Res 42:551–553

    Google Scholar 

  • Bergstrom BH, Henley C, Costello DP (1973) Particulate flagellar and ciliary necklaces revealed by the use of freeze-etch. Cytobios 7:51–60

    Google Scholar 

  • Billard R, Fléchon J-E (1969) Spermatogonies et spermatocytes flagellés chez poecilia reticulata (Téléostéens Cyprinodonti-formes). Ann Biol Anim Biochim Biophys 9:281–286

    Google Scholar 

  • Boisvieux-Ulrich E, Sandoz D, Chailley B (1977) A freeze-fracture and thin section study of the ciliary necklace in quail oviduct. Biol Cell 30:245–252

    Google Scholar 

  • Burton PR (1981) Polymorphic assemblies of tubulin. In: Dowben RM, Shay JW (eds) Cell and Muscle Motility, vol 1. Plenum, New York, pp 289–333

    Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556

    Google Scholar 

  • Dirksen ER, Gilula NB, Davidson L, Schooley C, Satir B, Satir P (1971) New aspects of cilia structure. Anat Rec 169:464

    Google Scholar 

  • Dustin P (1984) Microtubules. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dute R, Kung C (1978) Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol 78:451–464

    Google Scholar 

  • Eddy EM (1970) Cytochemical observations on the chromatoid body of the male germ cells. Biol Reprod 2:114–128

    Google Scholar 

  • Fain-Maurel M-A (1966) Acquisitions récentes sur les spermato-genèses atypiques. Ann Biol 5:513–564

    Google Scholar 

  • Fawcett DW (1970) A comparative view of sperm ultrastructure. Biol Reprod 2:90–127

    Google Scholar 

  • Fawcett DW, Eddy EM, Phillips DM (1970) Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol Reprod 2:129–153

    Google Scholar 

  • Ferraguti M, Lanzavecchia G (1971) Morphogenetic effects of microtubules. I. Spermiogenesis in Annelida Tubificidae. J Submicrosc Cytol 3:121–137

    Google Scholar 

  • Flower NE (1971) Particles within membranes: A freeze-etch view. J Cell Sci 9:435–441

    Google Scholar 

  • Friedländer M, Wahrman J (1966) Giant centrioles in neuropteran meiosis. J Cell Sci 1: 129–144

    Google Scholar 

  • Friedländer M, Wahrman J (1970) The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth, Bombyx mori. J Cell Sci 7:65–89

    Google Scholar 

  • Friedländer M, Wahrman J (1971) The number of centrioles in insect sperm: A study in two kinds of differentiating silkworm spcrmatids. J Morphol 134:384–398

    Google Scholar 

  • Fritz-Niggli H, Suda T (1972) Bildung und Bedeutung der Zentriolen: Eine Studie und Neuinterpretation der Meiose von Drosophila. Cytobiologie 5:12–41

    Google Scholar 

  • Gall JG (1961) Centriole replication. A study of spermatogenesis in the snail Viviparus. J Biophys Biochem Cytol 10:163–193

    Google Scholar 

  • Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol 91:107s-124s

    Google Scholar 

  • Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53:494–509

    Google Scholar 

  • Glaser RW (1917) cited in: Lokwood APM (1961) “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol 2:241–289

    Google Scholar 

  • Hinsch GW, Clark WH (1973) Comparative fine structure of Cnidaria spermatozoa. Biol Reprod 8:62–73

    Google Scholar 

  • Holm PB, Rasmussen SW (1980) Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males. Carlsberg Res Commun 45:483–548

    Google Scholar 

  • Jespersen Å(1971) Fine structure of the spermatozoon of the Australian lungfish Neoceratodus forsteri (Krefft). J Ultrastruct Res 37:178–185

    Google Scholar 

  • Kalnins VT, Porter KR (1969) Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch 100:1–30

    Google Scholar 

  • Phillips DM (1974) Spermiogenesis. Academic Press, New York

    Google Scholar 

  • Pickett-Heaps JD (1969) The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 3:257–280

    Google Scholar 

  • Pitelka DR (1974) Basal bodies and root structures. In: MA Sleigh (ed) Cilia and Flagella. Academic Press, London, pp 437–469

    Google Scholar 

  • Rieder CL, Borisy GG (1982) The centrosome cycle in PtK2 cells: Asymmetric distribution and structural changes in the pericentriolar material. Biol Cell 44:117–132

    Google Scholar 

  • Röhlich P (1975) The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia. Cell Tissue Res 161:421–4130

    Google Scholar 

  • Sakai A, Shigenaga M (1966) Fine structure of centrioles of the grasshoppers, Acrida turrita Linné and Atractomorpha bedeli Bolivar. Cytologia 32:105–110

    Google Scholar 

  • Satir P, Satir B (1964) A model for ninefold symmetry in α keratin and cilia. J Theor Biol 7:123–128

    Google Scholar 

  • Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena. Exp Cell Res 97:83–91

    Google Scholar 

  • Satir P, Wais-Steider J, Lebduska S, Nasr A, Avolio J (1981) The mechanochemical cycle of the dynein arm. Cell Motil 1:303–327

    Google Scholar 

  • Silberglied RE, Shepherd JG, Dickinson JL (1984) Eunuchs: The role of apyrene sperm in Lepidoptera? Am Nat 123:255–265

    Google Scholar 

  • Sleigh M (1974) Cilia and Flagella. Academic Press, London

    Google Scholar 

  • Thibout E (1980) Evolution and role of apyrene sperm cells of Lepidopterans: Their activation and denaturation in the leek moth, Acrolepiopsis assectella (Hypomeutoidea). In: Clarke WH, Adams TS (eds) Adv Invertebr Reprod. Elsevier, Amsterdam, pp 231–242

    Google Scholar 

  • Thompson GA, Bambery RJ, Nozawa Y (1972) Environmentally produced alterations of the tetrahymanol: Phospholipid ratio in Tetrahymena pyriformis membranes. Biochim Biophys Acta 260:630–638

    Google Scholar 

  • Tokuyasu KT (1974) Dynamics of spermiogenesis in Drosophila melanogaster. III. Relation between axoneme and mitochondrial derivatives. Exp Cell Res 84:239–250

    Google Scholar 

  • Troyer D, Cameron ML (1980) Spermiogenesis in lumbricid earthworms revisited. I. Function and fate of centrioles, fusion of organelles and organelle movements. Biol Cell 37:273–286

    Google Scholar 

  • Vorobjev IA, Chentsov YuS (1983) The dynamics of reconstitution of microtubules around the cell center after cooling. Eur J Cell Biol 30:149–153

    Google Scholar 

  • Warner FD (1981) Structure-function relationships in cilia and flagella. In: Harris JR (ed) Electron Microscopy of Proteins, vol 1. Academic Press, London, pp 301–344

    Google Scholar 

  • Wheatley DN (1982) The centriole, a central enigma of cell biology. Elsevier, Amsterdam

    Google Scholar 

  • Wolf K (1987) Cytology of Lepidoptera. I. The nuclear area in secondary oocytes of Ephestia kuehniella contains remnants of the first division. Eur J Cell Biol 43:223–229

    CAS  PubMed  Google Scholar 

  • Wolf K, Traut W (1987) Ultrastructure of distal flagellar swellings in spermatocytes and spermatids of Ephestia kuehniella (Pyralidae, Lepidoptera) Cell Tissue Res 250:421–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, K.W., Kyburg, J. The restructuring of the flagellar base and the flagellar necklace during spermatogenesis of Ephestia kuehniella Z. (Pyralidae, Lepidoptera). Cell Tissue Res. 256, 77–86 (1989). https://doi.org/10.1007/BF00224720

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224720

Key words

Navigation