Skip to main content
Log in

Transformation of cytoplasmic actin importance for the organization of the contractile gel reticulnm and the contraction — relaxation cycle of cytoplasmic actomyosin

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

(1) Within the low viscous flowing endoplasm of Physarum polycephalum a considerable amount of actin is in the non-filamentous state. This can be demonstrated by applying poly-L-lysin to surface spreads of native protoplasm. (2) It has been shown that in protoplasmic drops the endoplasm-ectoplasm transformation is accompanied by an actin polymerization from the non-filamentous state to F-actin. (3) The actual state of the labile G-F-actin equilibrium determines the varying consistency (viscosity) of the cytoplasm. (4) Increasing viscosity can be interpreted as being brought about by a) shifting of the G-F-actin equilibrium to the filamentous side, and (b) increased myosin-mediated binding sites between actin filaments. (5) Polymerization and depolymerization processes are involved in the rhythmically occurring contraction-relaxation cycle of cytoplasmic actomyosin in Physarum. (6) Cytoplasmic actin and myosin represent the architectural proteins of the contractile gel reticulum in eukaryotic cells. (7) The importance of the regulation of actin polymerization as a basic control mechanism of the eukaryotic cell is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostini, B., Govindan, V.M., Hofmann, W., Wieland, Th.: Phalloidin-induced proliferation of actin filaments within rat hepatocytes. Z. Naturforsch. 30, 793–795 (1975)

    Google Scholar 

  • Albrecht-Buehler, G., Goldman, R.D.: Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells. Exp. Cell Res. 97, 329–339 (1976)

    Google Scholar 

  • Alléra, A., Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. IX. Aggregationszustände des Myosins und Bedingungen zur Entstehung von Myosinfilamenten in den Plasmodien von Physarum polycephalum. Cytobiologie 6, 261–286 (1972)

    Google Scholar 

  • Beck, R., Hinssen, H., Komnick, H., Stockem, W., Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. V. Kontraktion, ATP-ase Aktivität und Feinstruktur isolierter Actomyosinfäden von Physarum polycephalum. Cytobiologie 2, 259–274 (1970)

    Google Scholar 

  • Buckley, I.K.: Three dimensional fine structure of cultured cells. Possible implications for subcellular motility. Tissue and Cell 7, 51–72 (1975)

    Google Scholar 

  • Camp, W.G.: A method of cultivating myxomycete plasmodia. Bull. Torrey bot. Cl. 63, 205–210 (1936)

    Google Scholar 

  • Dancker, P., Löw, I., Hasselbach, W., Wieland, Th.: Interaction of actin with phalloidin. Biochim. biophys. Acta (Amst.) 400, 407–414 (1975)

    Google Scholar 

  • Erickson, H.P.: Cold Spring Harb. Conf. on Cell Motility (1975) and J. Cell Biol. in press: 1976

  • Fleischer, M., Wohlfarth-Bottermann, K.E.: Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10, 339–365 (1975)

    Google Scholar 

  • Frey-Wyssling, A.: Die submikroskopische Struktur des Cytoplasmas. In: Protoplasmatologia II. Cytoplasma. Wien: Springer 1955

    Google Scholar 

  • Frey-Wyssling, A.: Macromolecules in cell structure. Cambridge: Harvard University Press 1957

    Google Scholar 

  • Gall, J.: Chromosome fibres from an interphase nucleus. Science 139, 120–121 (1963)

    Google Scholar 

  • Gingell, D., Palmer, J.F.: Changes in membrane impedance associated with cortical contraction in the egg of Xenopus laevis. Nature (Lond.) 217, 98–102 (1968)

    Google Scholar 

  • Hatano, S., Oosawa, F.: Isolation and characterization of plasmodial actin. Biochim. biophys. Acta (Amst.) 127, 488–498 (1966)

    Google Scholar 

  • Hatano, S.. Takahashi, K.: Structure of myosin A from a myxomycete plasmodium and its aggregation at low ionic salt concentrations. J. Mechanochem. Cell Motility 1, 7–14 (1971)

    Google Scholar 

  • Heilbrunn, L.V.: The viscosity of protoplasm. In: Protoplasmatologia II. Cytoplasma. Wien: Springer 1958

    Google Scholar 

  • Hinssen, H.: Synthetische Myosinfilamente von Schleimpilz-Plasmodien. Cytobiologie 2, 326–331 (1970)

    Google Scholar 

  • Hinssen, H.: Actin in isoliertem Grundplasma von Physarum polycephalum. Cytobiologie 5, 146–164 (1972)

    Google Scholar 

  • Hinssen, H., D'Haese, J.: Filament formation by slime mould myosin isolated at low ionic strength. J. Cell Sci. 15, 113–129 (1974)

    Google Scholar 

  • Huxley, H.E.: Electron microscope studies on the structure of natural and synthetic filaments from striated muscle. J. molec. Biol. 7, 281–308 (1963)

    Google Scholar 

  • Isenberg, G., Rathke, P.C., Hülsmann, N., Franke, W.W., Wohlfarth-Bottermann, K.E.: Cytoplasmic actomyosin fibrils in tissue culture cells — Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166, 427–443 (1976)

    Google Scholar 

  • Kane, R.E.: Preparation and purification of polymerized actin from sea urchin egg extracts. J. Cell Biol. 66, 305–315 (1975)

    Google Scholar 

  • Kessler, D.: On the location of myosin in the myxomycete Physarum polycephalum and its possible function in cytoplasmic streaming. J. Mechanochem. Cell Motility 1, 125–137 (1972)

    Google Scholar 

  • Kessler, D., Nachmias, V.T., Loewy, A.: Actomyosin content of Physarum plasmodia and detection of immunological crossreactions with myosins from related species. J. Cell Biol. 69, 393–406 (1976)

    Google Scholar 

  • Komnick, H., Stockem, W., Wohlfarth-Bottermann, K.E.: Cell motility: Mechanisms in protoplasmic streaming and ameboid movement. Int. Rev. Cytol. 34, 169–249 (1973)

    Google Scholar 

  • Kushida, H.: A styrene methacrylate resin embedding method for ultrathin sectioning. J. Electron Microscopy 10, 16–19 (1961)

    Google Scholar 

  • Lengsfeld, A., Löw, I., Wieland, Th., Dancker, P., Hasselbach, W.: Interaction of Phalloidin with actin. Proc. nat. Acad. Sci. (Wash.) 71, 2803–2807 (1974)

    Google Scholar 

  • Lowey, S., Cohen, C.: Studies on the structure of myosin. J. molec. Biol. 4, 293–308 (1962)

    Google Scholar 

  • Luchtel, D., Bluemink, J.G., De Laat, S.W.: The effect of injected Cytochalasin B on filament organization in the cleaving egg of Xenopus laevis. J. Ultrastruct. Res. 54, 406–419 (1976)

    Google Scholar 

  • Marchesi, V.T., Palade, G.E.: The localization of Mg-Na-K activated adenosine triphosphate on red cell ghost membranes. J. Cell Biol. 35, 385–404 (1967)

    Google Scholar 

  • Nachmias, V.T.: Properties of Physarum myosin purified by a potassium iodide procedure. J. Cell Biol. 62, 54–65 (1974)

    Google Scholar 

  • Nagai, R., Kato, I.: Cytoplasmic filaments and their assembly into bundles in Physarum plasmodium. Protoplasma 86, 141–158 (1975)

    Google Scholar 

  • Parducz, B.: Eine neue Schnellfixierungsmethode im Dienste der Protistenforschung und des Unterrichts. Ann. Mus. Nat. Hung 2, 5–12 (1952)

    Google Scholar 

  • Parsons, D.F.: Negative staining of thinly spread cells and associated veins. J. Cell Biol. 16, 620–626 (1963)

    Google Scholar 

  • Pinder, J.C., Bray, D., Gratzer, W.B.: Actin polymerization induced by spectrin. Nature (Lond.) 258, 765–766 (1975)

    Google Scholar 

  • Pollard, T.D.: The role of actin in the temperature dependent gelation and contraction of extracts of Acanth amoeba. J. Cell Biol. 68, 579–601 (1976)

    Google Scholar 

  • Pollard, T.D., Ito, S.: Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J. Cell Biol. 46, 267–289 (1970)

    Google Scholar 

  • Pollard, T.D., Weihing, R.R.: Actin and myosin and cell movement. CRC Critical Reviews of Biochem. 2, 1–65 (1974)

    Google Scholar 

  • Portzehl, H., Schramm, G., Weber, H.H.: Actomyosin und seine Komponenten. 1. Mitt.: Darstellung von Actomyosin und L-Myosin und Bestimmung ihrer physikalischen Konstanten. Z. Naturforsch. 56, 61–74 (1950)

    Google Scholar 

  • Rinaldi, R., Opas, M., Hrebenda, B.: Contractility of glycerinated Amoeba proteus and Chaos chaos. J. Protozool. 22, 286–292 (1975)

    Google Scholar 

  • Rüegg, J.C.: Smooth muscle tone. Physiol. Rev. 51, 201–248 (1971)

    Google Scholar 

  • Schroeder, T.E.: Dynamics of the contractile ring. In: Molecules and cell movement (S. Inoué, R.E. Stephens, eds.). Soc. Gen. Physiol. Series, Vol. 30, pp. 305–334. New York: Raven Press 1975

    Google Scholar 

  • Shoenberg, F.C.: An electron microscope study of the influence of divalent ions on myosin filament formation in chicken gizzard extracts and homogenates. Tissue and Cell 1, 83–96 (1969)

    Google Scholar 

  • Shoenberg, F.C., Needham, D.M.: A study of the mechanism of contraction in vertebrate smooth muscle. Biol. Rev. 51, 53–104 (1976)

    Google Scholar 

  • Spudich, A.J., Cooke, R.: Supramolecular forms of actin from amoeba of Dictyostelium discoideum. J. bil. Chem. 250, 7485–7491 (1975)

    Google Scholar 

  • Thiele, H.: Histolyse und Histogenese. Gewebe und ionotrope Gele. Prinzip einer Strukturbildung. Frankfurt/Main: Akad. Verlagsges. 1967

    Google Scholar 

  • Tilney, L.G.: The polymerization of actin. II. How non-filamentous actin becomes non randomly distributed in sperm: Evidence for the association of this actin with membranes. J. Cell Biol. 69, 51–72 (1976a)

    Google Scholar 

  • Tilney, L.G.: The polymerization of actin. III. Aggregates on non-filamentous actin and its associated protein: A storage form of actin. J. Cell Biol. 69, 73–89 (1976b)

    Google Scholar 

  • Tilney, L.G.: The role of actin in non-muscle motility. In: Molecules and cell movement (S. Inoué, R.E. Stephens, eds.). Soc. Gen. Physiol. Series, Vol. 30, pp. 339–388. New York: Raven Press 1975

    Google Scholar 

  • Tilney, L.G., Detmers, P.: Actin in erythrocyte ghosts and its association with spectrin. Evidence for a non-filamentous form of these two molecules in situ. J. Cell Biol. 66, 508–520 (1975)

    Google Scholar 

  • Tilney, L.G., Hatano, S., Ishikawa, H., Mooseker, M.S.: The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J. Cell Biol. 59, 109–126 (1973)

    Google Scholar 

  • Wieland, Th.: Phallotoxins and microfilaments. In: Molecular basis of motility (L.H.G. Heilmeyer, J.C. Rüegg, Th. Wieland, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Protistenstudien. X. Licht- und elektronenmikroskopische Untersuchungen an der Amoebe Hyalodiscus simplex. Protoplasma 52, 58–107 (1960)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Cytologische Studien. VII. Strukturaspekte der Grundsubstanz des Cytoplasmas nach Einwirkung verschiedener Fixierungsmittel. Untersuchungen am Hyaloplasma von Amoeben der Limax- und Proteus-Gruppe. Protoplasma 53, 259–290 (1961)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54, 514–539 (1962)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Cell structures and their significance for amoeboid movement. Int. Rev. Cytol. 16, 61–132 (1964a)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In: Primitive motile systems in cell biology (R.D. Allen and N. Kamiya, eds.), pp. 79–109. New York: Academic Press 1964 b

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. III. Entstehung und experimentell induzierbare Musterbildungen. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 156, 371–403 (1965)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Grundplasma. In: Grundlagen der Cytologie (G.C. Hirsch, H. Ruska, P. Sitte, eds.), pp. 123–133. Stuttgart: Gustav Fischer 1973

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Tensiometric demonstration of endogenous, oscillating contractions in plasmodia of Physarum polycephalum. Z. Pflanzenphysiol. 76, 14–27 (1975)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Ursachen von Zellbewegungen — cytoplasmatische Actomyosine und ihre Bedeutung für Protoplasmaströmungen und Zellmotilität. Vortrag 4. 2. 1975, Deutsche Akademie der Naturforscher Leopoldina, Leopoldina (in press)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E., Fleischer, M.: Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation. Cell Tiss. Res. 165, 327–344 (1976)

    Google Scholar 

  • Wohlfarth-Bottermann, K.E., Stockem, W.: Die Regeneration des Plasmalemms von Physarum polycephalum. Wilhelm Roux' Archiv 164, 321–340 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Dr. H. Hinssen and R. Beck for the preparation of HMM from rabbit skeletal muscle and for performing the gel-electrophoresis, and Dr. R.L. Snipes for reading the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, G., Wohlfarth-Bottermann, K.E. Transformation of cytoplasmic actin importance for the organization of the contractile gel reticulnm and the contraction — relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res. 173, 495–528 (1976). https://doi.org/10.1007/BF00224311

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224311

Key words

Navigation