Skip to main content
Log in

Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid

1. Allozyme variation

  • Originals
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Allozyme differentiation at 13 loci was studied in populations of Pinus tabulaeformis, P. densata, and P. yunnanensis from China. It was previously suggested that P. densata represents a Tertiary hybrid between P. tabulaeformis and P. yunnanensis. The observed levels of allozyme variation within and among the investigated species were comparable to those of other conifers. P. tabulaeformis differed markedly from P. yunnanensis with respect to allozyme frequencies, while P. densata was intermediate between the two putative parents. There was evidence of homozygote excess in embryos from all investigated species, as compared to Hardy-Weinberg expectations. The observed allozyme composition of P. densata conformed to earlier morphological and molecular evidence indicating hybrid origin of this taxon. It was proposed that fusion of gene pools from P. tabulaeformis and P. yunnanensis has led to adaptive evolution of a new species, P. densata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388

    Google Scholar 

  • Cheliak WM, Wang J, Pitel JA (1988) Population structure and genie diversity in tamarack, Larix laricina (Du Roi) K. Koch. Can J For Res 18:1218–1324

    Google Scholar 

  • Cheng W-C (1930) A study of the Chinese pines. Contrib Biol Lab Sci Soc China Bot Ser 6:5–21 (in Chinese)

    Google Scholar 

  • Cheng W-C, Fu L-G (1978) Chinese flora. Science Press, Beijing, pp 203–280 (in Chinese)

    Google Scholar 

  • Christensen KI (1987) Taxonomic revision of the Pinus mugo complex and P. x rhaetica (P. mugo x sylvestris) (Pinaceae). Nord J Bot 7:383–408

    Google Scholar 

  • Clayton JW, Tretiak DN (1972) Amine-citrate buffers for pH control in starch gel electrophoresis. J Fisheries Res Board Can 29:1169–1172

    Google Scholar 

  • Conkle MT, Hodgkiss PD, Nunnally LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA Gen Tech Rep PSW-64

  • Copes DL, Beckwith RC (1977) Isoenzyme identification of Piceaglauca, P. sitchensis, and P. lutzii populations. Bot Gaz 138:512–521

    Google Scholar 

  • Curie-Cohen M (1982) Estimates of inbreeding in natural population: a comparison of sampling properties. Genetics 100:339–358

    Google Scholar 

  • Farjon A (1984) Pines: drawings and descriptions of the genus. E. Brill, Leiden, The Netherlands, pp 219

    Google Scholar 

  • Florence LZ, Hicks RR Jr (1980) Further evidence for introgression of Pinus taeda with P. echinata: electrophoretic variability and variation in resistance to Cronartium fusiforme. Silvae Genet 29:41–43

    Google Scholar 

  • Govindaraju DR (1988) Mating systems and the opportunity for group selection in plants. Evol Trends Plants 2:99–106

    Google Scholar 

  • Guan C-T (1981) Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxon Sin 11:393–407 (in Chinese)

    Google Scholar 

  • Huang M, Ge S, Xu N (1988) Population genetic construction of isozymes in Masson pine (Pinus massoniana Lamb.). Abstr Lect IUFRO Conf Biochem Markers Population Genet For Trees, October 11–13, 1988, Villa Paolina, PoranoOrvieto, Italy

    Google Scholar 

  • Karalamangala RR, Nickrent DL (1989) An electrophoretic study of representatives of subgenus Diploxylon of Pinus. Can J Bot 67:1750–1759

    CAS  PubMed  Google Scholar 

  • Krutovskii KV, Politov DV, Altukhov YP (1988) Genetic variability of stone pine, Pinus sibirica Du Tour. II. Level of allozyme variability in a natural population in western Sayan. Genetika 24:118–124 (in Russian)

    Google Scholar 

  • Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Google Scholar 

  • Li B-D, Liu Z-T (1984) The distribution pattern of Pinus yunnanensis. J Yunnan Univ 1:33–46 (in Chinese)

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Millar CI (1983) A steep cline in Pinus muricata. Evolution 37:311–319

    Google Scholar 

  • Millar CI, Strauss SH, Conkle MT, Westfall RD (1988) Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Syst Bot 13:351–370

    Google Scholar 

  • Mirov NT (1967) The genus Pinus. Ronald Press, New York, pp 602

    Google Scholar 

  • Muona O, Szmidt AE (1985) A multilocus study of natural populations of Pinus sylvestris. Lect Notes Biomath 60:226–240

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Plessas ME, Strauss SH (1986) Allozyme differentiation among populations, stands, and cohorts in Monterey pine. Can J For Res 16:1155–1164

    Google Scholar 

  • Prus-Glowacki W, Szweykowski J (1979) Studies on antigenic differences in needle proteins of Pinus sylvestris L., P. mugo Turra, P. uliginosa Neumann, and P. nigra Arnold. Acta Soc Bot Pol XLVIII:217–238

    Google Scholar 

  • Shaw D, Allard RW (1982) Isozyme heterozygosity in adult and open pollinated embryo samples of Douglas fir. Silva Fenn 16:115–121

    Google Scholar 

  • Shiraishi S (1988) Inheritance of isozyme variations in Japanese black pine, Pinus thunbergii Parl. Silvae Genet 37:93–100

    Google Scholar 

  • Sigurgeirsson A, Szmidt AE, Karpinska B (1990) Alaskan Picea sitchensis populations infiltrated with Picea glauca genes: a study using DNA markers. In: Hattemer HH, Fineschi S (eds) Biochemical markers in the population genetics of forest trees. SPB Academic Publishing, The Hague, The Netherlands, pp 197–207

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Numerical taxonomy. WH Freeman, San Francisco/CA

    Google Scholar 

  • Swofford DL, Selander RB (1981) BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283

    Google Scholar 

  • Szmidt AE (1982) Genetic variation in isolated populations of stone pine (Pinus cembra L.). Silva Fenn 16:196–200

    Google Scholar 

  • Szmidt AE (1984) Genetic studies of Scots pine (Pinus sylvestris L.) domestication by means of isozyme analysis. PhD thesis, The Swedish University of Agricultural Sciences, Umeâ, 91–576–2123–300:1–186

    Google Scholar 

  • Szmidt AE, Muona O (1985) Genetic effects of Scots pine (Pinus sylvestris L.) domestication. Lect Notes Biomath 60:241–252

    Google Scholar 

  • Szmidt AE, El-Kassaby YA, Sigurgeirsson A, Aldèn T, Lindgren D, Hällgren J-E (1988) Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Theor Appl Genet 76:841–845

    Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100

    CAS  PubMed  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Populationen und Korrelationenserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Google Scholar 

  • Wang X-R, Shen X-H, Szmidt AE (1990) The choice of allozyme markers for studies in conifer seed orchards: the case of Pinus tabulaeformis Carr. In: Hattemer HH, Fineschi S (eds) Biological markers in the population genetics of forest trees. SPB Academic Publishing, The Hague, The Netherlands, pp 173–181

    Google Scholar 

  • Wheeler NC, Guries RP (1982) Population structure, genie diversity, and morphological variation in Pinus contorta Dougl. Can J For Res 12:595–606

    Article  MATH  Google Scholar 

  • Wheeler NC, Guries RP (1987) A quantitative measure of introgression in lodgepole and jack pines. Can J Bot 65:1876–1885

    Google Scholar 

  • Wheeler NC, Guries RP, O'Malley DM (1983) Biosystematics of the genus Pinus, Subsection Contortae. Biochem Syst Ecol 11:333–340

    Google Scholar 

  • Wu CL (1956) The taxonomic revision and phytogeographical study of Chinese pines. Acta Phytotaxon Sin 5:131–163 (in Chinese)

    Google Scholar 

  • Yeh FC, Arnott JT (1986) Electrophoretic and morphological differentiation of Picea sitchensis Picea glauca and their hybrids. Can J For Res 16:791–798

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. M. A. Tigerstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.R., Szmidt, A.E., Lewandowski, A. et al. Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid. Theoret. Appl. Genetics 80, 635–640 (1990). https://doi.org/10.1007/BF00224223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224223

Key words

Navigation