Skip to main content
Log in

Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A F1 microspore-derived DH population, previously used for the development of a rapeseed RFLP map, was analysed for the distribution of erucic acid and seed oil content. A clear three-class segregation for erucic acid content could be observed and the two erucic acid genes of rapeseed were mapped to two different linkage groups on the RFLP map. Although the parents of the segregating DH population showed no significant difference in seed oil content, in the DH population a transgressive segregation in oil content was observed. The segregation closely followed a normal distribution, characteristic of a quantitative trait. Using the program MAPMAKER/QTL, three QTLs for seed oil content could be mapped on three different linkage groups. The additive effects of these QTLs explain about 51% of the phenotypic variation observed for this trait in the DH population. Two of the QTLs for oil content showed a close association in location to the two erucic acid genes, indicating a direct effect of the erucic acid genes on oil content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barone A, Ritter E, Schachtschabel U, Debener T, Salamini F, Gebhardt C (1990) Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Mol Gen Genet 224:177–182

    Google Scholar 

  • Beare JL, Gregory RW, Campbell JA (1959) The effects of different varieties of rapeseed oil on weight gain, and of golden rapeseed oil on the reproduction of the rat. Can J Biochem Physiol 37:1191–1195

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621

    Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus). Can J Plant Sci 44:104–111

    Google Scholar 

  • Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n = 9 diploid species. Genome 33:131–142

    CAS  Google Scholar 

  • Jönsson R (1977) Erucic acid heredity in rapeseed (Brassica napus L. and Brassica campestris L.). Hereditas 86:159–170

    Google Scholar 

  • Jung C, Kleine M, Fischer F, Herrmann RG (1990) Analysis of DNA from a Beta procumbens chromosome fragment in sugar beet carrying a gene for nematode resistance. Theor Appl Genet 79:663–672

    Google Scholar 

  • Kishimoto N, Foolad MR, Shimosaka E, Matsuura S, Saito A (1993) Alignment of molecular and classical linkage maps of rice, Oryza sativa. Plant Cell Rep 12:457–461

    Google Scholar 

  • Kleinhofs A, Kilian A, Maroof MAS, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Huffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Klein-Lankhorst R, Rietveld P, Machiels B, Verkerk R, Weide R, Gebhardt C, Koornneef M, Zabel P (1991) RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor Appl Genet 81:661–667

    Google Scholar 

  • Kondra ZP, Stefansson BR (1965) Inheritance of erucic and eicosenoic acid content of rape-seed oil (Brassica napusi). Can J Genet Cytol 7:505–510

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552

    Google Scholar 

  • Lühs W, Friedt W (1993) Non-food uses of vegetable oils and fatty acids. In: Murphy DJ (ed) Designer oil crops: breeding, processing and biotechnology. VCH, Weinheim New York Basel Cambridge Tokyo, pp 73–130

    Google Scholar 

  • Mather K (1951, 1957) The measurement of linkage in heredity (2nd edn.). Methuen, London

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Pillen K, Steinrücken G, Wricke G, Herrmann RG, Jung C (1992) A linkage map of sugar beet (Beta vulgaris L.). Theor Appl Genet 84:129–135

    Google Scholar 

  • Reinhardt T-C (1992) Entwicklung und Anwendung von Nah-infrarot-spektroskopischen Methoden für die Bestimmung von O1-, Protein-, Glucosinolat-, Feuchteund Fettsäure-Gehalten in intakter Rapssaat. Dissertation, Universität Göttingen, Cuvillier Verlag Göttingen

    Google Scholar 

  • Roine P, Uksila E (1959) Experiments on feeding rats with rapeseed oils. Acta Agric Fenn 94:151–153

    Google Scholar 

  • Siebel J, Pauls KP (1989) Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theor Appl Genet 77:489–494

    Google Scholar 

  • Stefansson BR, Hougen FW (1964) Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can J Plant Sci 44:359–364

    Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Aing WRA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Thies W (1971) Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Raps-Kotyledonen. I. Gaschromatographische Methoden. Z Pflanzenzüchtg 65:181–202

    Google Scholar 

  • Thomasson HJ (1955) The biological value of oils and fats. II. The growth-retarding substance in rapeseed oil. J Nutr 56:469–475

    Google Scholar 

  • Uzunova M, Ecke W, Weißleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecke, W., Uzunova, M. & Weißleder, K. Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theoret. Appl. Genetics 91, 972–977 (1995). https://doi.org/10.1007/BF00223908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223908

Key words

Navigation