Climate Dynamics

, Volume 9, Issue 7, pp 345–362 | Cite as

Response of the Météo-France climate model to changes in CO2 and sea surface temperature

  • J F Mahfouf
  • D Cariolle
  • J F Royer
  • J F Geleyn
  • B Timbal


The climate response to an increase in carbon dioxide and sea surface temperatures is examined using the Météo-France climate model. This model has a high vertical resolution in the stratosphere and predicts the evolution of the ozone mixing ratio. This quantity is fully interactive with radiation and photochemical production and loss rates are accounted for. Results from a 5-year control run indicate a reasonable agreement with observed climatologies. A 5-year simulation is performed with a doubled CO2 concentration using, as lower boundary conditions, mean surface temperatures anomalies and sea ice limits predicted for the years 56–65 of a 100-year transient simulation performed at Hamburg with a global coupled atmosphere-ocean model. The perturbed simulation produces a global mean surface air warming of 1.4 K and an increase in global mean precipitation rate of 4%. Outside the high latitudes in the Northern Hemisphere, the model simulates a strong cooling in the stratosphere reaching 10 K near the stratopause. Temperature increases are noticed in the lower polar stratosphere of the Northern Hemisphere caused by an intensification in the frequency of sudden warmings in the perturbed simulation. The low and mid-latitude stratospheric cooling leads to an ozone column enhancement of about 5%. Other features present in similar studies are exhibited in the troposphere such as the stronger surface warming over polar regions of the Northern Hemisphere, the summer time soil moisture drying in mid-latitudes and the increase in high convective cloudiness in tropical regions.


Ozone Ozone Column Lower Boundary Condition Photochemical Production High Vertical Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betts AK, Harshvardhan (1987) Thermodynamic constraint on the cloud liquid water feedback in climate models. J Geophys Res 92(D7):8483–8485Google Scholar
  2. Bhumralkar CM (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J Appl Meteor 14:1246–1258Google Scholar
  3. Boer GJ, Arpe K, Blackburn M, Déqué M, Gates WL, Hart TL, Le Treut H, Roekner E, Sheinin DA, Simmonds I, Smith RNB, Tiakoda T, Wetherald RT, Williamson D (1992) Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J Geophys Res 97:12771–12786Google Scholar
  4. Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121CrossRefGoogle Scholar
  5. Bowman KP, Kruger AJ (1985) A global climatology of the total ozone from Nimbus 7 Total Ozone Mapping Spectrometer. J Geophys Res 90:7967–7976Google Scholar
  6. Brasseur G, Hitchman MH (1988) Stratospheric response to trace gas perturbations: changes in ozone and temperature distributions. Science 240:634–637Google Scholar
  7. Cariolle D, Déqué M (1986) Southern Hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91(D10):10825–10846Google Scholar
  8. Cariolle D, Lasserre-Bigorry A, Royer J-F, Geleyn J-F (1990) A GCM simulation of the springtime Antarctic ozone decrease and its impact on midlatitudes. J Geophys Res 95(D2):1883–1898Google Scholar
  9. Cess RD, Potter GL, Blanchet J-P, Boer GJ, Del Genio AD, Déqué M, Dymnikov, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roekner E, Royer J-F, Schlese U, Scheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1990) Intercomparison and interpretation of climate feedback processes in 19 general circulation models. J Geophys Res 95:16601–16615Google Scholar
  10. Cess RD, Potter GL, Zhang M-H, Blanchet J-P, Chalita S, Colman R, Dazlich DA, Del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Treut H, Liang X-Z, Mahfouf J-F, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Norris PM, Randall DA, Rikus L, Roekner E, Royer J-F, Schlese U, Scheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Intercomparison of snow-feedback as produced by 17 general circulation models. Science 253:888–892Google Scholar
  11. Cubasch U, Hasselmann K, Hock H, Maier-Reimer E, Mikalojewicz U, Santer BD, Sausen (1992) Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Clim Dyn 8:55–69Google Scholar
  12. Deardorff JW (1977) A parameterization of the ground surface moisture content for use in atmospheric predictions models. J Appl Meteor 16:1182–1185Google Scholar
  13. Dumenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. Adv Theor Hydrol 1:129–157Google Scholar
  14. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  15. Gates WL, Cook KH, Schlesinger ME (1981) Preliminary analysis of experiments on the climatic effects of increased CO2 with an atmospheric general circulation model and a climatological ocean. J Geophys Res 86:6385–6393Google Scholar
  16. Gates WL, Mitchell JFB, Boer GJ, Cubasch U, Meleshko VP (1992) Climate modelling, climate prediction and model validation. Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 103–133Google Scholar
  17. Geleyn J-F (1987) Use of a modified Richardson number for parameterizing the effect of shallow convection. J Meteorol Soc Japan, Special NWP Symposium Volume, pp 141–149Google Scholar
  18. Geleyn J-F, Hollingworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atmos 52:1–16Google Scholar
  19. Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change. The IPCC scientific assessment. Cambridge University Press, CambridgeGoogle Scholar
  20. Jaeger L (1976) Monatskarten des Niederschlags fur die ganze Erde. Tech Rep 18, Ber Deutsch Wetterdienstes 139Google Scholar
  21. Labbé L (1991) Validation mutuelle de deux approches des calculs radiatifs pour la provision numérique. Tech Rep ENM, 42, Av. Coriolis, 31057 Toulouse Cedex, FranceGoogle Scholar
  22. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:111–127Google Scholar
  23. Li Z-X, Le Trent H (1992) Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions. Clim Dyn 7:133–139Google Scholar
  24. Louis JF, Tiedke M, Geleyn JF (1981) A short history of the operational PBL parameterization of the ECMWF. In: Workshop on planetary boundary layer. ECMWF, pp 59–79Google Scholar
  25. Mahfouf J-F (1991) Etude du code radiatif du modèle EMERAUDE. Tech Rep 17, CNRM, Toulouse, FranceGoogle Scholar
  26. Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15Google Scholar
  27. Manabe S, Wetherald RT (1987) Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J Atmos Sci 44:1211–1235Google Scholar
  28. Mitchell JFB (1983) The seasonal response of a general circulation model to changes in CO2 and sea surface temperature. Q J R Meteorol Soc 109:113–152Google Scholar
  29. Mitchell JFB, Ingram WJ (1992) Carbon dioxide and climate: mechanisms of changes in cloud. J Clim 5:5–21Google Scholar
  30. Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence results. Q J R Meteorol Soc 113:293–322Google Scholar
  31. Pitari G, Palermi S, Visconti G, Prinn RG (1992) Ozone response to a CO2 doubling: results from a stratospheric general circulation model with heterogeneous chemistry. J Geophys Res 97(D5):5953–5962Google Scholar
  32. Planton S, Déqué M, Bellevaux C (1991) Validation of an annual cycle simulation with a T42-L20 GCM. Clim Dyn 5:189–200Google Scholar
  33. Ramanathan V (1981) The role of ocean-atmosphere interactions in the CO2 climate problem. J Atmos Sci 38:918–930Google Scholar
  34. Randel WJ (1992) Global atmospheric circulation statistics, 1000-1 mb. Techn Rep NCARGoogle Scholar
  35. Rind D, Suozzo R, Balachandran NK, Prather MJ (1990) Climate changes and the middle atmosphere. Part I: the doubled CO2 climate. J Atmos Sci 47(4):475–494Google Scholar
  36. Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  37. Royer J-F, Planton S, Déqué M (1990) A sensitivity experiment for the removal of Arctic sea ice with the French spectral general circulation model. Clim Dyn 5:1–17Google Scholar
  38. Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean-atmosphere models with flux corrections. Clim Dyn 2:154–163Google Scholar
  39. Schmitt C, Randall DA (1991) Effects of surface temperature and clouds on the CO2 forcing. J Geophys Res 96(D5):9159–9168Google Scholar
  40. Stephenson DB, Held IM (1993) GCM response of northern winter stationary waves and stormtracks to increasing amounts of carbon dioxide. J Clim (in press)Google Scholar
  41. Stouffer RJ, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 342:660–662Google Scholar
  42. Tiedke M (1984) The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr Phys Atmos 57:216–239Google Scholar
  43. Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415Google Scholar
  44. Wilson CA, Mitchell JFB (1987) A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. J Geophys Res 92(D):13315–13343Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J F Mahfouf
    • 1
  • D Cariolle
    • 1
  • J F Royer
    • 1
  • J F Geleyn
    • 1
  • B Timbal
    • 1
  1. 1.Météo-France/CNRMToulouse CedexFrance

Personalised recommendations