Skip to main content
Log in

Is there evidence of a role of the phosphoinositol-cycle in the myocardium?

  • Invited Paper
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The recent findings on a more general involvement of phospholipids in signal transduction and on the different roles of inositolphospholipids in particular, thoroughly complicate research in this field. It becomes increasingly evident that measuring [3H]inositolphosphate formation alone will never provide insight into the complex machinery of cellular signalling. Certainly for the heart in which the role(s) of the inositol-phospholipids is far from clarified, the novel trends provide new directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishizuka Y: Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370, 1984

    Google Scholar 

  2. Berridge MJ, Irvine RF: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321, 1984

    Google Scholar 

  3. Abdel-Latif AA: Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Am Soc Pharmacol Exp Ther 38: 227–272, 1986

    Google Scholar 

  4. Colodzin M, Kennedy EP: Biosynthesis of diphosphoinositide in brain. J Biol Chem 240: 3771–3780, 1965

    Google Scholar 

  5. Kai M, White GL, Hawthorne JN: The phosphatidylinositol kinase of rat brain. Biochem J 101: 328–337, 1966

    Google Scholar 

  6. Whitman M, Downes CP, Keeler M, Keller T, Cantley L: Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositoi-3-phosphate. Nature 332:644–646, 1988

    Google Scholar 

  7. Kai M, Salway JG, Hawthorne JN: The diphosphoinositide kinase of rat brain. Biochem J 106: 791–801, 1968

    Google Scholar 

  8. Nijjar MS, Hawthorne JN: Purification and properties of polyphosphoinositide phosphomonoesterase from rat brain. Biochim Biophys Acta 480: 390–402, 1977

    Google Scholar 

  9. DeGeorge JJ, Ousley AH, McCarthy KD, Lapetina EG, Morell P: Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates andglycerophosphoinositol in C62B glioma cells. J Biol Chem 262: 8077–8083, 1987

    Google Scholar 

  10. Martin TW, Wysolmerski RB: Ca2+-dependent and Ca2−independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells. J Biol Chem 262: 13086–13092, 1987

    Google Scholar 

  11. Irvine RF, Moor RM: Micro-injection of inositol 1,3,4,5tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240: 917–920, 1986

    Google Scholar 

  12. Schmitz W, Scholz H, Scholz J, Steinfath M: Increase in IP3 precedes a-adrenoceptor-induced increase in force of contraction in cardiac muscle. Eur J Pharmacol 140: 109–111, 1987

    Google Scholar 

  13. Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, Schwabe U, Puurunen J: Alpha-1 adrenoceptormediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 245:327–335, 1988

    Google Scholar 

  14. Brown JH, Buxton IL, Brunton LL: α1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985

    Google Scholar 

  15. Woodcock EA, Schmauk White LB, Smith AI, McLeod JK: Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61: 625–631, 1987

    Google Scholar 

  16. Brown JH, Jones LG: Phosphoinositide metabolism in the heart. In: JW Putney, Jr (ed). Phosphoinositides and receptor mechanisms. AR Liss, Inc., New York, 1986, pp 245–270

    Google Scholar 

  17. Brückner R, Scholz H: Effects of a-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82: 223–232, 1984

    Google Scholar 

  18. Otani H, Otani H, Das DK: α1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62: 8–17, 1988

    Google Scholar 

  19. Brown JH, Buxton IL, Brunton LL: α1-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985

    Google Scholar 

  20. Hescheler J, Kameyama M, Trautwein W: On the mechanism of muscarinic inhibition of the cardiac Ca current. Pfluegers Arch 407: 182–189, 1986

    Google Scholar 

  21. Hartzell HC, Fischmeister R: Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323: 273–275, 1986

    Google Scholar 

  22. Breitwieser GE, Szabo G: Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317: 538–540, 1985

    Google Scholar 

  23. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B: GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536–538, 1985

    Google Scholar 

  24. Sorota S, Tsuji Y, Tajima T, Pappano AJ: Pertussis toxin treatment blocks hyperpolarization by muscarinic agonists in chick atrium. Circ Res 57: 748–758, 1985

    Google Scholar 

  25. Tajima T, Tsuji Y, Brown JH, Pappano AJ: Pertussis toxininsensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ Res 61: 436–445, 1987

    Google Scholar 

  26. Leung E, Johnston CI, Woodcock EA: Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sci 39: 2215–2220, 1986

    Google Scholar 

  27. Orellana SA, Brown JH: Stimulation of phosphoinositide hydrolysis and inhibition of cyclic AMP formation by muscarinic agonists in developing chick heart. Biochem Pharmacol 34: 1321–1324, 1985

    Google Scholar 

  28. Brown JH, Brown SL: Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J Biol Chem 259: 3777–3781, 1984

    Google Scholar 

  29. Baker KM, Singer HA: Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res 62: 896–904, 1988

    Google Scholar 

  30. Vittet D, Berta P, Mathieu MN, Rondot A, Travo P, Cantau B, Chevillard C: V1a vasopressin-induced accumulation of inositol trisphosphate in cultured rat aortic myocytes: modulation by protein kinase C. Biochem Biophys Res Commun 140: 1093–1100, 1986

    Google Scholar 

  31. Jones LG, Brown JH: Stimulation of phosphoinositide hydrolysis by thrombin in embryonic chick heart cells. Abstract. Fed Proc 45: 930, 1986

    Google Scholar 

  32. Legssyer A, Poggioli J, Renard D, Vassort G: ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol 401: 185–199, 1988

    Google Scholar 

  33. von Harsdorf R, Lang R, Fullerton M, Smith AI, Woodcock EA: Right atrial dilatation increases inositol-(1,4,5) trisphosphate accumulation. FEBS 233: 201–205, 1988

    Google Scholar 

  34. Sonnenberg H, Veress AT: Cellular mechanism of release of atrial natriuretic factor. Biochem Biophys Res Commun 124:443–449, 1984

    Google Scholar 

  35. Lindmar R, Löffelholz K, Sandmann J: Characterization of choline efflux from the perfused heart at rest and after muscarine receptor activation. Naunyn-Schmiedeberg's Arch Pharmacol 332: 224–229, 1986

    Google Scholar 

  36. Doležal V, Tuček S: Activation of muscarinic receptors stimulates the release of choline from brain slices. Biochem Biophys Res Commun 120: 1002–1007, 1984

    Google Scholar 

  37. Cabot MC, Welsh CJ, Zhang Z, Cao H, Chabbott H, Lebowitz M: Vasopressin, phorbol diesters and serum elicit choline glycerophospholipid hydrolysis and diacylglycerol formation in nontransformed cells: transformed derivatives do not respond. Biochim Biophys Acta 959: 46–57, 1988

    Google Scholar 

  38. Irving HR, Exton JH: Phosphatidylcholine breakdown in rat liver plasma membranes. J Biol Chem 262: 3440–3443, 1987

    Google Scholar 

  39. Muir JG, Murray AW: Bombesin and phorbol ester stimulate phosphatidylcholine hydrolysis by phospholipase C: evidence for a role of protein kinase C. J Cell Physiol 130: 382–391, 1987

    Google Scholar 

  40. MacDonald ML, Mack KF, Glomset JA: Regulation of phosphoinositide phosphorylation in Swiss 3T3 cells stimulated by platelet-derived growth factor. J Biol Chem 262: 1105–1110, 1987

    Google Scholar 

  41. Renard D, Poggioli J, Berthon B, Claret M: How far does phospholipase C activity depend on the cell calcium concentration? Biochem J 243: 391–398, 1987

    Google Scholar 

  42. Whipps DE, Armston AE, Pryor HJ, Halestrap AP: Effects of glucagon and Ca2+ on the metabolism of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in isolated rat hepatocytes and plasma membranes. Biochem J 241: 835–845, 1987

    Google Scholar 

  43. Pike LJ, Eakes AT: Epidermal growth factor stimulates the production of phosphatidylinositol monophosphate and the breakdown of polyphosphoinositides in A431 cells. J Biol Chem 262: 1644–1651, 1987

    Google Scholar 

  44. Walker DH, Pike LJ: Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor. Proc Natl Acad Sci USA 84: 7513–7517, 1987

    Google Scholar 

  45. Clinch SH, Mullaney JM, Ghosh TK, Zachary AL, Gill DL: GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 262: 13857–13864, 1987

    Google Scholar 

  46. Wolf BA, Florholmen J, Colca JR, McDaniel ML: GTP mobilization of Ca2 from the endoplasmic reticulum of islets. Biochem J 242: 137–141, 1987

    Google Scholar 

  47. Mullaney JM, Clinch SH, Ghosh TK, Gill DL: Intracellular calcium uptake activated by GTP. J Biol Chem 262: 13865–13872, 1987

    Google Scholar 

  48. Clapper DL, Walseth TF, Dargie PJ, Lee HC: Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262: 9561–9568, 1987

    Google Scholar 

  49. Brass LF, Laposata M: Diacylglycerol causes Ca release from the platelet dense tubular system: comparisons with Ca release caused by inositol 1,4,5-triphosphate. Biochem Biophys Res Commun 142: 7–14, 1987

    Google Scholar 

  50. Chan KM, Turk J: Mechanism of arachidonic acid-induced Ca2+ mobilization from rat liver microsomes. Biochim Biophys Acta 928: 186–193, 1987

    Google Scholar 

  51. Wolf BA, Turk J, Sherman WR, McDaniel ML: Intracellular Ca2+ mobilization by arachidonic acid. J Biol Chem 261: 3501–3511, 1986

    Google Scholar 

  52. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y: The structure, expression, and properties of additional members of the protein kinase C family. J Biol Chem 263: 6927–6932, 1988

    Google Scholar 

  53. Huang CK, Devanney JF, Kanaho Y: Regulation of membrane associated protein kinase C activity by guanine nucleotide in rabbit peritoneal neutrophil. Biochem Biophys Res Commun 142: 242–250, 1987

    Google Scholar 

  54. Murakami K, Chan SY, Routtenberg A: Protein kinase C activation by cis-fatty acid in the absence of Ca 2+ and phospholipids. J Biol Chem 261: 15424–15429, 1986

    Google Scholar 

  55. Sekiguchi K, Tsukuda M, Ogita K, Kikkawa U, Nishizuka Y: Three distinct forms of rat brain protein kinase C: differential response to unsaturated fatty acids. Biochem Biophys Res Commun 145: 797–802, 1987

    Google Scholar 

  56. Nishikawa M, Hidaka H, Shirakawa S: Possible involvement of direct stimulation of protein kinase C by unsaturated fatty acids in platelet activation. Biochem Pharmacol 37: 3079–3089, 1988

    Google Scholar 

  57. O'Brain CA, Arthur WL, Weinstein IB: The activation of protein kinase C by the polyphosphoinositides phosphatidylinositol 4,5-diphosphate and phosphatidylinositol 4monophosphate. FEBS Letters 214: 339–342, 1987

    Google Scholar 

  58. Wightman PD, Raetz RH: The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J Biol Chem 259: 10048–10052, 1984

    Google Scholar 

  59. Oishi K, Raynor RL, Charp PA, Kuo JF: Regulation of protein kinase C by lysophospholipids. J Biol Chem 263: 6865–6871, 1988

    Google Scholar 

  60. Kolesnick RN, Clegg S: 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. J Biol Chem 263: 6534–6537, 1988

    Google Scholar 

  61. Hayashi F, Sumi M, Amakawa T: Phosphatidylinositol stimulates phosphorylation of protein components I and II in rod outer segments of frog photoreceptors. Biochem Biophys Res Commun 148: 54–60, 1987

    Google Scholar 

  62. Sweet LJ, Dudley DT, Pessin JE, Spector AA: Phospholipid activation of the insulin receptor kinase: regulation by phosphatidylinositol. FASEB J 1: 55–59, 1987

    Google Scholar 

  63. Suzuki T, Wang JH: The phosphorylation of purified phospholamban by cyclic AMP-dependent protein kinase is stimulated by phosphatidylinositol. J Biol Chem 262: 3880–3885, 1987

    Google Scholar 

  64. Sylvia VL, Norman JO, Curtin GM, Busbee DL: Monoclonal antibody that blocks phosphoinositide-dependent activation of mouse tumor DNA polymerase alpha. Biochem Biophys Res Commun 141: 60–66, 1986

    Google Scholar 

  65. Moller F, Wilson JE: The influence of specific phospholipids on the interaction of hexokinase with the outer mitochondrial membrane. J Neurochem 41: 1109–1118, 1983

    Google Scholar 

  66. Smith CD, Wells WW: Solubilization and reconstitution of a nuclear envelope-associated ATPase. J Biol Chem 259: 11890–11894, 1984

    Google Scholar 

  67. Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT: Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125: 908–915, 1984

    Google Scholar 

  68. Hruska KA, Mills SC, Khalifa S, Hammerman MR: Phosphorylation of renal brush-border membrane vesicles. J Biol Chem 258: 2501–2507, 1983

    Google Scholar 

  69. Simmons DA, Kern EFO, Winegrad AI, Martin DB: Basal phosphatidylinositol turnover controls aortic Na+/K+ ATPase activity. J Clin Invest 77: 503–513, 1986

    Google Scholar 

  70. Varsanyi M, Tölle HG, Heilmeyer Jr LMG, Dawson RMC, Irvine RF: Activation of sarcoplasmic reticular Ca2+ transport ATPase by phosphorylation of an associated phosphatidylinositol. EMBO J 2: 1543–1548, 1983

    Google Scholar 

  71. Lassing I, Lindberg U: Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin: actin complex. J Cell Biochem 37: 255–267, 1988

    Google Scholar 

  72. Janmey PA, Iida K, Yin HL, Stossel TP: Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and pro mote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem 262: 12228–12236, 1987

    Google Scholar 

  73. Burn P: Phosphatidylinositol cycle and its possible involvement in the regulation of cytoskeleton-membrane interactions. J Cell Biochem 36: 15–24, 1988

    Google Scholar 

  74. Hansson A, Skoglund G, Lassing I, Lindberg U, Ingelman-Sundberg M: Protein kinase C-dependent phosphorylation of profilin is specifically stimulated by phosphatidylinositol bisphosphate (PIP2). Biochem Biophys Res Commun 150: 526–531, 1988

    Google Scholar 

  75. Lassing I, Lindberg U: Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474, 1985

    Google Scholar 

  76. Janmey PA, Stossel TP: Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325: 362–364, 1987

    Google Scholar 

  77. de Chaffoy de Courcelles D, Roevens P, Van Belle H: 1-Oleoyl-2-acetyl-glycerol (OAG) stimulates the formation of phosphatydylinositol 4-phosphate in intact human platelets. Biochem Biophys Res Commun 123: 589–595, 1984

    Google Scholar 

  78. de Chaffoy de Courcelles D, Roevens P, Van Belle H: Agents that elevate platelet CAMP stimulate the formation of phosphatidylinositol 4-phosphate in intact human platelets. FEBS 195: 115–118, 1986

    Google Scholar 

  79. de Chaffoy de Courcelles D, Roevens P, Van Belle H: 12-O-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets. FEBS 173: 389–393, 1984

    Google Scholar 

  80. Giraud F, Gascard P, Sulpice JC: Stimulation of polyphosphoinositide turnover upon activation of protein kinases in human erythrocytes. Biochim Biophys Acta 968: 367–378, 1988

    Google Scholar 

  81. de Chaffoy de Courcelles D, Roevens P, Van Belle H, Kennis L, Somers Y, De Clerck F: The role of endogenously formed diacylglycerol in the propagation and termination of platelet activation. A biochemical and functional analysis using the novel diacylglycerol kinase inhibitor, R 59 949. J Biol Chem 264: 3274–3285, 1988

    Google Scholar 

  82. Low MG, Saltiel AR: Structural and functional roles of glycosylphosphatidylinositol in membranes. Science 239: 268–275, 1988

    CAS  PubMed  Google Scholar 

  83. Standaert ML, Farese RV, Cooper DR, Pollet RJ: Insulin-induced glycerolipid mediators and the stimulation of glucose transport in BC3H-1 myocytes. J Biol Chem 263: 8696–8705, 1988

    Google Scholar 

  84. Saltiel AR: Insulin generates an enzyme modulator from hepatic plasma membranes: regulation of adenosine 3′,5′-monophosphate phosphodiesterase, pyruvate dehydrogenase, and adenylate cyclase. Endocrinology 120: 967–1203, 1987

    Google Scholar 

  85. Kelly KL, Mato JM, Jarett L: The polar head group of a novel insulin-sensitive glycophospholipid mimics insulin action on phospholipid methyltransferase. FEBS Letters 209: 238–241, 1986

    Google Scholar 

  86. Saltiel AR, Cuatrecasas P: Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83, 5793–5797, 1986

    Google Scholar 

  87. Fisher SK, Agranoff BW: Receptor activation and inositol lipid hydrolysis in neural tissues. J Neurochem 48: 999–1017, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Courcelles, D.d.C. Is there evidence of a role of the phosphoinositol-cycle in the myocardium?. Mol Cell Biochem 88, 65–72 (1989). https://doi.org/10.1007/BF00223425

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223425

Key words

Navigation