Skip to main content
Log in

Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Several techniques of DNA analysis were applied to identify chrysanthemum cultivars. Unrelated cultivars could be distinguished by using RAPDs (random amplified polymorphic DNAs), inter-SSR (simple sequence repeat) PCR (polymerase chain reaction), hybridization-based DNA fingerprinting, as well as RFLPs (restriction fragment length polymorphisms). Cultivars with different flower colours and belonging to one family, i.e. vegetatively derived from 1 cultivar, appeared to have the same DNA fragment patterns, whichever technique was applied. The absence of polymorphisms between different accessions of the same cultivar indicated a high stability of the observed patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson NO, Ascher PD, Widmer RE (1992) Inbreeding depression in garden and glasshouse chrysanthemums: germination and survivorship. Euphytica 62:155–169

    Google Scholar 

  • Baird E, Cooperbland S, Waugh R, Demaine M, Powell W (1992) Molecular characterisation of inter-specific and intra-specific somatic hybrids of potato using randomly amplified polymorphic DNA (RAPD) markers. Mol Gen Genet 233:469–475

    CAS  PubMed  Google Scholar 

  • Broertjes C, Van Harten AM (1978) Application of mutation breeding methods in the improvement of vegetatively propagated crops. Elsevier, Amsterdam

    Google Scholar 

  • Brown PTH, Lörz H (1986) Molecular changes and possible origins of somaclonal variation. In: Semal J (ed) Somaclonal variations and crop improvement. Martinus Nijhoff, Boston, pp. 148–159

    Google Scholar 

  • Brown PTH, Lange FD, Kranz E, Lörz H (1993) Analysis of single protoplasts and regenerated plants by PCR and RAPD technology. Mol Gen Genet 237:311–317

    Google Scholar 

  • Bush SR, Earle ED, Langhans RW (1976) Plantlets from petal segments, petal epidermis, and shoot tips of the periclinal chimera, Chrysanthemum morifolium ‘Indianapolis’ Am J Bot 63:729–737

    Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9:553–557

    Google Scholar 

  • Demeke T, Kawchuk LM, Lynch DR (1993) Identification of potato cultivars and clonal variants by random amplified polymorphic DNA analysis. Am Potato J 70:561–570

    Google Scholar 

  • Dowrick GJ, El-Bayoumi A (1966) The origin of new forms of the garden Chrysanthemum. Euphytica 15:32–38

    Google Scholar 

  • Fiebich D, Hennig F (1992) Use of isozyme analysis in breeding of chrysanthemum. Gartenbauwissenschaft 57:212–218

    Google Scholar 

  • Gorg R, Schachtschabel U, Ritter E, Salamini F, Gebhardt C (1992) Discrimination among 136 tetraploid potato varieties by fingerprints using highly polymorphic DNA markers. Crop Sci 32:815–819

    Google Scholar 

  • Graham J, McNicol RJ, Greig K, Van De Ven WTG (1994) Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced by random primers. J Hortic Sci 69:123–130

    Google Scholar 

  • Hu J, Quiros CF (1991) Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep 10:505–511

    Google Scholar 

  • Isabel N, Tremblay L, Michaud M, Tremblay FM, Bousquet J (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B.S.P. Theor Appl Genet 86:81–87

    CAS  Google Scholar 

  • Koller B, Lehmann A, McDermott JM, Gessler C (1993) Identification of apple cultivars using RAPD markers. Theor Appl Genet 85:901–904

    Google Scholar 

  • Lavi U, Hillel J, Lahav E, Sharon D (1991) Application of DNA fingerprints for identification and genetic analysis of avacado. J Am Soc Hortic Sci 116:1078–1081

    Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol 39:413–437

    Google Scholar 

  • Mailer RJ, Scarth R, Fristensky B (1994) Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor Appl Genet 87:697–704

    Google Scholar 

  • Malaure RS, Barclay G, Power JB, Davey MR (1991a) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture. 1. Shoot regeneration from ray florets and somaclonal variation exhibited by the regenerated plants. J Plant Physiol 139:8–13

    Google Scholar 

  • Malaure RS, Barclay G, Power JB, Davey MR (1991b) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture. 2. Securing natural mutations (sports.) J Plant Physiol 139:14–18

    Google Scholar 

  • Marsolais JV, Pringle JS, White BN (1993) Assessment of random amplified polymorphic DNA (RAPD) as genetic markers for determining the origin of interspecific lilac hybrids. Taxon 42:531–537

    Google Scholar 

  • Mulcahy DL, Cresti M, Sansavini S, Douglas GC, Linskens HF, Mulcahy GB, Vignani R, Pancaldi M (1993) The use of Random Amplified Polymorphic DNAs to fingerprint apple genotypes. Sci Hortic 54:89–96

    Google Scholar 

  • Nilke M, Nowak J, Wright JM, Mclean NL (1993) DNA fingerprinting of red clover (Trifolium pratense L) with Jeffrey probes —detection of somaclonal variation and other applications. Plant Cell Rep 13:72–78

    Google Scholar 

  • Nybom H, Schaal BA, Rogstad SH (1989) DNA “fingerprints” can distinguish cultivars of blackberries and rapsberries. Acta Hortic 262:305–310

    Google Scholar 

  • Parent JG, Fortin MG, Page D (1993) Identification of raspberry cultivars by random amplified polymorphic DNA (RAPD) analysis. Can J Plant Sci 73:1115–1122

    Google Scholar 

  • Poulsen GB, Kahl G, Weising K (1993) Oligonucleotide fingerprinting of resynthesized Brassica napus. Euphytica 70:53–59

    Google Scholar 

  • Rajapakse S, Hubbard M, Kelly JW, Abbott AG, Ballard RE (1992) Identification of rose cultivars by restriction fragment length polymorphism. Sci Hortic 52:237–245

    Google Scholar 

  • Stewart RN, Dermen H (1970) Somatic genetic analysis of the apical layers of chimeral sports in Chrysanthemum by experimental production of adventitious shoots. Am J Bot 57:1061–1971

    Google Scholar 

  • Striem MJ, Spiegel-Roy P, Ben-Hayyim G, Beckmann J, Gidoni D (1990) Genomic DNA fingerprinting of Vitis vinifera by the use of multi-loci probes. Vitis 29:223–227

    Google Scholar 

  • Teynor TM, Ascher PD, Widmer RE, Luby JJ (1989) Inheritance of flower color in Dendranthema grandiflora Tzvelev. (Chrysanthemum morifolium Ramat.) using cultivars and inbreds. II Vacuole pigmentation. Euphytica 42:297–305

    Google Scholar 

  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine:classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    Google Scholar 

  • Vallés MP, Wang ZY, Montavon P, Potrykus I, Spangenberg G (1993) Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue (Festuca pratensis Huds.) Plant Cell Rep 12:101–106

    Google Scholar 

  • Vosman B, Arens P, Rus-Kortekaas W, Smulders MJM (1992) Identification of highly polymorphic DNA regions in tomato. Theor Appl Genet 85:239–244

    Google Scholar 

  • Watanabe K (1977) The control of diploidlike meiosis in polyploid taxa of Chrysanthemum (Compositae). Jpn J Genet 52: 125–131

    Google Scholar 

  • Weising K, Nybom H, Meyer W, Wolff K (1994) DNA fingerprinting in plants and fungi. CRC Press, Florida

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Rec 18:7213–7218

    Google Scholar 

  • Wilde J, Waugh R, Powell W (1992) Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor Appl Genet 83:871–877

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Wolff K, Peters-Van Rijn J (1993) Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity 71:335–341

    Google Scholar 

  • Wolff K, Rogstad SH, Schaal BA (1994a) Population and species variation of minisatellite DNA in Plantago. Theor Appl Genet 87:733–740

    Google Scholar 

  • Wolff K, Peters-Van Rijn J, Hofstra H (1994b) RFLP analysis in chrysanthemum. I. Probe and primer development. Theor Appl Genet 88:472–478

    Google Scholar 

  • Wu L, Lin H (1994) Identifying buffalograss [Buchloe dactyloides (Nutt) Engelm] cultivar breeding lines using random amplified polymorphic DNA (RAPD) markers. J Am Soc Hortic Sci 119:126–130

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR) —anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. M. A. Tigerstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, K., Zietkiewicz, E. & Hofstra, H. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theoret. Appl. Genetics 91, 439–447 (1995). https://doi.org/10.1007/BF00222971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222971

Key words

Navigation