Skip to main content

Advertisement

Log in

Molecular lesions in cancer

  • Current Thinking
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Newer methods of identifying biochemical events associated with cancer include recombinant DNA technology, monoclonal antibodies and improved analysis of nuclear and other cell functions to determine specific events which occur commonly in cancer cells. ‘One-gene’ products offer potential opportunities for new approaches to cancer treatment and the hope of inducing differentiation of cancer cells toward their normal counterparts. Studies on antigens which react with monoclonal antibodies offer the opportunity for ‘Iepitope attack’ which may be effected by improved drugs or by design of totally new drugs to bind to specific reactive sites. The complexity and pleiomorphism of cancer do not permit predictions as to whether these approaches will be more effective than the empirical approach to cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busch H: An Introduction to the Biochemistry of the Cancer Cell. Academic Press, New York, 1962.

    Google Scholar 

  2. Busch H: A general concept for molecular biology of cancer. Cancer Res 36:4291–4294, 1976.

    Google Scholar 

  3. Busch H, Yeoman LC: Tumor Markers. Methods in Cancer Research, Vols 19 and 20. Academic Press, New York, 1982.

    Google Scholar 

  4. Fishman WH, Sell S: Oncodevelopment Gene Expression. Academic Press, New York, 1976.

    Google Scholar 

  5. Pitot HC: Fundamentals of Oncology. Marcel Dekker, New York, 1981.

    Google Scholar 

  6. Busch H: Molecular Biology of Cancer. Academic Press, New York, 1974.

    Google Scholar 

  7. Krontiris TG: The emerging genetics of human cancer. N Engl J Med 309:404–409, 1983.

    Google Scholar 

  8. Owens Jr AH, Coffey DS, Baylin SB (eds): Tumor Cell Heterogeneity: Origins and Implications. Bristol-Myers Cancer Symposia. Academic Press, New York, 1982.

    Google Scholar 

  9. Warburg O, Posener K, Negelein E: Uber den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344, 1924.

    Google Scholar 

  10. Weber G: Biochemical strategy of cancer cells and the design of chemotherapy. Cancer Res 43:3466–3492, 1983.

    Google Scholar 

  11. Markert CL, Shaklee JB, Whitt GS: Evolution of a gene. Science (Washington, DC) 189:102–114, 1975.

    Google Scholar 

  12. Sato K, Satoh K, Sato T, Imai F, Morris HP: Isozyme patterns of glycogen phosphorylase in rat tissues and transplantable hepatomas. Cancer Res 36:487–495, 1976.

    Google Scholar 

  13. Schapira F: Resurgence of fetal isozymes in cancer: Study of aldolase, pyruvate kinase, lactic dehydrogenase, and -hexosaminidase. Isozymes: Current Topics Biol Med Res 5:27–75, 1981.

    Google Scholar 

  14. Schapira F, Hatzfeld A, Reuber MD: Fetal pattern of aldolase in transplantable hepatomas. Cancer Res 31: 1224–1230,1971.

    Google Scholar 

  15. Foti AG, Herschman H, Cooper JF: Isozymes of acid phosphatase in normal and cancerous human prostatic tissue. Cancer Res 37:4120–4124, 1977.

    Google Scholar 

  16. Hammond KD, Balinsky D: Isozyme studies of several enzymes of carbohydrate metabolism in human adult and fetal tissues, tumor tissues, and cell cultures. Cancer Res 38:1323–1328,1978.

    Google Scholar 

  17. Hatzfeld A, Geldmann G, Guesnon J, Frayssinet C, Schapira F: Location of adult and fetal aldolases A, B, and C by immunoperoxidase technique in LF fast-growing rat hepatomas. Cancer Res 38:16–22, 1978.

    Google Scholar 

  18. Kester MV, Phillips TL, Gracy RW: Changes in glycolytic enzyme levels and isozyme expression in human lymphocytes during blast transformation. Arch Biochem Biophys 183:700–709,1977.

    Google Scholar 

  19. Liau MC, Chang CF, Belanger L, Gremer A: Correlation of isozyme patterns of S-adenosylmethionine symhetase with fetal stages and pathological states of the liver. Cancer Res 39:162–169, 1979.

    Google Scholar 

  20. Pan Y-CE, Sharief FS, Okabe M, Huang S, Li SS-L: Amino acid sequence studies on lactate dehydrogenase C4 isozymes from mouse and rat testes. J Biol Chem 258:7005–7016,1983.

    Google Scholar 

  21. Rattazzi MC, Scandalios JG, Whitt GS: Isozymes: Current Topics in Biological and Medical Research, Vol 8. Alan R Liss Inc, New York, 1983.

    Google Scholar 

  22. Ashley MP, Zbar B, Hunter JT, Rapp HJ, Sugimoto T: Adjuvant-antigen requirements for active specific immunotherapy of microscopic metastases remaining after surgery. Cancer Res 40:4197–4203, 1980.

    Google Scholar 

  23. Der CJ, Standbridge EJ: A tumor-specific membrane phosphoprotein marker in human cell hybrids. Cell 26: 429–438,1981.

    Google Scholar 

  24. Ghose T, Norovell ST, Belitsky P, Tai J, Guclu A, Blair AH: Localization of 131I-labeled antibodies in human renal cell carcinomas and in a mouse hepatoma and correlation with tumor detection by photoscanning. Cancer Res 40:3018–3031, 1980.

    Google Scholar 

  25. Glenny Jr JR, Kaulfus PJ, McIntyre BW, Walborg Jr EF: Identification and partial characterization of the major galactoproteins present at the surface of AS-30D hepatocellular carcinoma cells. Cancer Res 40:2853–2859, 1980.

    Google Scholar 

  26. Hollinshead AC: Tumor-associated antigens: A review of clinical applications. Clinical Immunol Newsletter 1:23, 1980.

    Google Scholar 

  27. Judd W, Poodry CA, Strominger JL: Novel surface antigen expressed on dividing cells but absent from nondividing cells. J Exptl Med 152:1430–1435, 1980.

    Google Scholar 

  28. Kennel SJ, Foote LJ, Lankford PK: Analysis of surface proteins of mouse lung carcinomas using monoclonoal antibodies. Cancer Res 41:3465–3470, 1981.

    Google Scholar 

  29. Old LJ: Cancer immunology: The search for specificity. Cancer Res 41:361–375, 1981.

    Google Scholar 

  30. Seeger RC, Rosenblatt HM, Imai K, Ferrone S: Common antigenic determinants on human melanoma, glioma, neuroblastoma, and sarcoma cells defined with monoclonal antibodies. Cancer Res 41:2714–2717, 1981.

    Google Scholar 

  31. Strand M: Transformation-related antigens identified by monoclonal antibodies. Proc Natl Acad Sci USA 77: 3234–3238,1980.

    Google Scholar 

  32. Von Kleist SU: Diagnostic significance of tumor markers. Cancer Res 40:2977–2978, 1980.

    Google Scholar 

  33. Wilk AS, Bankhurst AD, Williams Jr RC: Crossed radioimmunoelectrophoresis for the analysis of lymphocyte surface antigens. J Immun Meth 30:309–316, 1979.

    Google Scholar 

  34. Penn I: Malignant Tumors in Organ Transplant Recipients. Springer-Verlag, New York, 1970.

    Google Scholar 

  35. Saxton RE, Torbett B, Nestor M, Fairhurst M, Cochran AJ, Eilber FR, Burk MW: Four distinct melanoma cell surface antigens defined by monoclonal antibodies. Am Assoc Cancer Res 24:226, 1983.

    Google Scholar 

  36. Zilber LA: Specific tumor antigens. Adv Cancer Res 5:291–329,1958.

    Google Scholar 

  37. Kosyakov PN, Korostelova VS: Carcinomas with identical and with different specific antigens. Bull Exptl Biol Med 47:226–230, 1959.

    Google Scholar 

  38. Wepsic HT: Overview of oncofetal antigens in caner. Ann Clin Lab Sci 13:261–266, 1982.

    Google Scholar 

  39. Klavins JV: Advances in biological markers for cancer. Ann Clin Lab Sci 13:275–280, 1983.

    Google Scholar 

  40. Sinkovics JG, Dreesman GR: Monoclonal antibodies of hybridomas. Rev Infect Dis 5:9–34, 1983.

    Google Scholar 

  41. Imhof BA, Reggio H, Vollmers HP, Birchmeier W: Focal contat protein FC-1: Universal distribution at cell-basal membrane adhesion sites in vivo (in preparation).

  42. Imhof BA, Vollmers HP, Godman SL, Birchmeier W: Cell-cell interaction and cell polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell (in press).

  43. Vollmers HP, Birchmeier W: Monoclonal antibodies inhibit the adhesion of mouse B16 melanoma cells in vitro and block lung metastasis in vivo. Proc Natl Acad Sci USA 80:3729–3733,1983.

    Google Scholar 

  44. Vollmers HP, Goodman SL, Birchmeier W: Monoclonal antibodies which prevent adhesion of B16 melanoma cells and reduce metastases in mice. Cross-reaction with human tumor cells. Proc Nat Acad Sci USA (in press).

  45. Ritz J, Pesando JB, Notis-McConarty J, Clavell LA, Sallan SE, Schlossman SF: Use of monoclonal antibodies as diagnostic and therapeutic reagents in acute lymphoblastic leukemia. Cancer Res 41:4771–4775, 1981.

    Google Scholar 

  46. Scheinberg DA, Strand M: Kinetic and catabolic considerations of monoclonal antibody targeting in erythro leukemic mice. Cancer Res 43:265–272, 1983.

    Google Scholar 

  47. Ugolini V, Nuinez G, Smith RG, Stastny P, Capra JD: Initial characterization of monoclonal antibodies against human monocytes. Proc Natl Acad Sci USA 77:6764–6768, 1980.

    Google Scholar 

  48. Willingham MC, Spicer SS, Graber CD: Immunocytologic labeling of calf and human lymphocyte surface antigens. Lab Invest 25:211, 1971.

    Google Scholar 

  49. Zola H: Monoclonal antibodies against human cell membrane antigens: A review. Pathology 12:539–557, 1980.

    Google Scholar 

  50. Miller RA, Levy R: Response of cutaneous T cell lymphoma to therapy with hybridoma monoclonal antibody. Lancet 2:226–230, 1981.

    Google Scholar 

  51. Miller RA, Maloney DG, Warnke R, Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. New Engl J Med 306:517–522, 1982.

    Google Scholar 

  52. Miller RA, Maloney DG, McKillop J, Levy R: In vivo effects of murine hybridoma monoclonal antibody in a patient with T-cell leukemia. Blood 58:78–86, 1981.

    Google Scholar 

  53. Adams DJ, Jajj H, Edwards DP, Bjercke RJ, McGuire WL: Detection of a Mr 24 000 estrogen-regulated protein in human breast cancer by monoclonal antibodies. Cancer Res 43:4297–4301, 1983.

    Google Scholar 

  54. Ashall F, Bramawell ME, Harris H: A new marker for human cancer cells. The Ca antigen and the Ca1 antibody. Lancet 3:1–6, 1982.

    Google Scholar 

  55. Braatz JA, Scharfe TR, Princler GL, McIntire KR: Characterization of a human lung tumor-associated antigen and development of a radioimmunoassay. Cancer Res 42: 849–855,1982.

    Google Scholar 

  56. Gaffar SA, Princler GL, McIntire KR, Braatz JA: A human lung tumor-associated cross-reactive with 1-antichymotrypsin. J Biol Chem 255:8334–8339, 1980.

    Google Scholar 

  57. Schlom J, Wunderlich D, Teramoto YA: Generation of human monoclonal antibodies reactive with human mammary carcinoma cells. Proc Natl Acad Sci USA 77: 6841–6845,1980.

    Google Scholar 

  58. Soule HR, Linder E, Edgington TS: Membrane 126-kilodalton phosphoglycoprotein associated with a human carcinoma identified by a hybridoma antibody to mammary carcinoma cells. Proc Natl Acad Sci USA 80:1332–1336, 1983.

    Google Scholar 

  59. Koestler TP, Papsidero LD, Nemoto T, Chu TM: Detection of a breast tissue-associated antigen by antiserum to Raji cell-bound circulating immune complexes of human breast cancer. Cancer Res 41:2900–2907, 1981.

    Google Scholar 

  60. Cronin WJ, Dorsett BH, Ioachim HL: Isolation of lung carcinoma-associated antibodies from immune complexes and production of heterologous antisera. Cancer Res 42:292–300, 1982.

    Google Scholar 

  61. Schnegg JF, Disernes AC, Carrel S, Accolla RS, Tribolet N: Human glioma-associated antigens detected by monoclonal antibodies. Cancer Res 41:1209–1213, 1981.

    Google Scholar 

  62. Schnegg JF, Tribolet N, Disernes AC, Martin-Achard A, Carrel S: Characterization of a rabbit anti-human malignant glioma antiserum. Int J Cancer 28:265–269, 1981.

    Google Scholar 

  63. Nudelman E, Hakamori S-I, Levery S, Yeh MY, Hellstrom KE, Hellstrom I: Characterization of a human melanoma associated ganglioside antigen defined by a monoclonal antibody, 4.2. J Biol Chem 257:12752–12756, 1982.

    Google Scholar 

  64. Bhavanandan VP, Kemper JG, Bystryn JC: Purification and partial characterization of a murine melanoma-associated antigen. J Biol Chem 255:5145–5153, 1980.

    Google Scholar 

  65. Vihko P, Lukkarinen O, Kontturi M, Vihko R: Effectiveness of radioimmunoassay of human prostate-specific acid phosphatase in the diagnosis and follow-up of therapy in prostatic carcinoma. Cancer Res 41:1180–1183, 1981.

    Google Scholar 

  66. Watson RA, Tang DB: The predictive value of prostatic acid phosphatase as a screening test for prostatic cancer. New Engl J Med 303:497–499, 1980.

    Google Scholar 

  67. Hellstrom J, Hellstrom KE, Brown JP: Monoclonal antibodies to tumor antigens and their possible clinical use (in preparation).

  68. Poste G: Experimental system for analysis of the malignant phenotype. Cancer Metastasis Rev 1:141–199, 1982.

    Google Scholar 

  69. Poste G, Doll J, Tzeng J, Zeidman I: Comparison of the metastatic properties of B16 melanoma clones isolated from cultured cell lines, subcutaneous tumors, and individual lung metastases. Cancer Res 42:2770–2778, 1982.

    Google Scholar 

  70. Poste G, Greig R: On the genesis and regulation of cellular heterogeneity in malignant tumors. Invasion Metastasis 2:137–176, 1982.

    Google Scholar 

  71. Poste G, Tzeng J, Doll J, Greig R, Rieman D, Zeidman I: Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases. Proc Natl Acad Sci USA 79:6574–6578, 1982.

    Google Scholar 

  72. Nery R: Carcinogenic mechanisms: A critical review and a suggestion that oncogenesis may be adaptive oncogenesis. Chem Biol Int 12:145–169, 1976.

    Google Scholar 

  73. Fishman WH: Activation of developmental genes in neoplastic transformation. Cancer Res 36:3423–3428, 1976.

    Google Scholar 

  74. Fishman WH, Singer RM: Regulatory controls of oncotrophoblast proteins and developmental alkaline phosphatases in cancer cells. Cancer Res 36:4256–4261, 1976.

    Google Scholar 

  75. Frattola L, Canal N, Ferrarese C, Tonini C, Tonon G, Villani R, Trabucchi M: Multiple forms of protein kinase from normal human brain and glioblastoma. Cancer Res 43:1321–1324,1983.

    Google Scholar 

  76. Busch H, Busch RK, Chan P-K, Kelsey D, Takahashi K: Nucleolar antigens of human tumors. Methods Cancer Res 19:109–177, 1982.

    Google Scholar 

  77. Rosenberg SA, Parker GA, Thorpe WP: Expression of oncofetal antigens by murine and human normal cells in tissue culture. Israel J Med Sci 14:98–104, 1978.

    Google Scholar 

  78. Carlin CR, Knowles BB: Identity of human epidermal growth factor (EGF) receptor with glycoprotein SA-7: Evidence for differential phosphorylation of the two components of the EGF receptor from A431 cells. Proc Natl Acad Sci USA 79:5026–5030, 1982.

    Google Scholar 

  79. Chambard J-C, Franchi A, Cam AG, Pouyssegur J: Growth factor-stimulated protein phosphorylation in G0/G1-arrested fibroblasts. J Biol Chem 258:1706–1713, 1983.

    Google Scholar 

  80. Cohn S, Carpenter G: Human epidermal growth factor: Isolation and chemical and biological properties. Proc Natl Acad Sci USA 72:1317–1321, 1975.

    Google Scholar 

  81. Feldman RA, Hanafusa T, Hanafusa H: Characterization of protein kinase activity associated with the transforming gene product of Fujinami sarcoma virus. Cell 22:757–765, 1980.

    Google Scholar 

  82. Pike LJ, Marquardt H, Todaro GJ, Gallis B, Casnellie JE, Bornstein P, Krebs EG: Transforming growth factor and epidermal growth factor stimulate the phosphorylation of a synthetic, tyrosine-containing peptide in a similar manner. J Biol Chem 257:14628–14631, 1982.

    Google Scholar 

  83. Hunter T, Cooper JA: Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24:741–752, 1981.

    Google Scholar 

  84. Cooper JA, Hunter T:Similarities and differences between the effects of epidermal growth factor and Rous sarcoma virus. J Cell Biol 91:878–883, 1981.

    Google Scholar 

  85. Adamson ED: High levels of expression of cellular oncogenes in extra-embryonal tissues. Proc Am Assoc Cancer Res 24:42, 1983 (Abstract).

    Google Scholar 

  86. Anzano MA, Roberts AB, Meyers CA, Komoriya A, Lamb LC, Smith JM, Sporn MB: Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res 42:4776–4778, 1982.

    Google Scholar 

  87. Gospodarowicz D, Lui G-M, Cheng J: Purification in high yield of brain fibroblast growth factor by preparative isoelectric focusing at pH 9.6. J Biol Chem 257:12266–12276, 1982.

    Google Scholar 

  88. Halper J, Moses HL: Epithelial tissue-derived growth factor-like polypeptides. Cancer Res 43:1972–1979, 1983.

    Google Scholar 

  89. Hammond GL, Wieben E, Markert CL: Molecular signals for initiating protein synthesis in organ hypertrophy. Proc Natl Acad Sci USA 76:2455–2459, 1979.

    Google Scholar 

  90. Nickell KA, Halper J, Moses HL: Transforming growth factors in solid human malignant neoplasms. Cancer Res 43:1966–1971,1983.

    Google Scholar 

  91. Rieber M, Bacalao J, Alonso G: Turnover of high-molecular weight cell surface proteins during growth and expression of malignant transformation. Cancer Res 35: 2104–2108,1975.

    Google Scholar 

  92. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78:5339–5343, 1981.

    Google Scholar 

  93. Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. New Engl J Med 303:878–880, 1980.

    Google Scholar 

  94. Stanbridge EJ, Rosen SW, Sussman HH: Expression of the subunit of human chorionic gonadotropin is specifically correlated with tumorigenic expression in human cell hybrids. Proc Natl Acad Sci USA 79:6242–6245, 1982.

    Google Scholar 

  95. Todaro GJ, Marquardt H, Twardzik DR, Johnson PA, Fryling CM: Transforming growth factors produced by tumor cells. In AH Owens, D Coffey and S Baylin (eds). Tumor Cell Heterogeneity. Academic Press Inc, 1982, Vol 4, pp 205–224.

  96. Tucker RF, Volkenant ME, Branum EL, Moses HL: Comparison of intra- and extracellular transforming growth factors from nontransformed and chemically transformed mouse embryo cells. Cancer Res 43:1581–1586, 1983.

    Google Scholar 

  97. Bishop JM: Cancer genes come of age. Cell 32:1018–1020, 1983.

    Google Scholar 

  98. Bishop JM: Cellular oncogenes and retroviruses. Ann Rev Biochem 52:301–354, 1983.

    Google Scholar 

  99. Duesberg PH: Retroviral transforming genes in normal cells? Nature 304:219–226, 1983.

    Google Scholar 

  100. O'Connor TE: Molecular lesions associated with neoplasia: An introduction to proviruses, retroviruses, LTR's and Onc genes. In: Oncogenes and Retroviruses: Evaluation of Basic Findings and Clinical Potential. Alan R Liss Inc, New York, 1983, pp 1–19.

    Google Scholar 

  101. Devare SG, Reddy EP, Robbins KC, Andersen PR, Tronick SR, Aaronson SA: Nucleotide sequence of the transforming gene of simian sarcoma virus. Proc Natl Acad Sci USA 79:3179–3182, 1982.

    Google Scholar 

  102. Devare SG, Reddy EP, Law JD, Aaronson SA: Nucleotide sequence analysis of the long terminal repeat of integrated simian sarcoma virus: evolutionary relationship with other mammalian retroviral long terminal repeats. J Virol 42: 1108–1113,1982.

    Google Scholar 

  103. Donoghue DJ: Demonstration of biological activity and nucleotide sequence of an in vitro synthesized clone of the Moloney murine sarcoma virus mos gene. J Virol 42: 538–546,1982.

    Google Scholar 

  104. Eva A, Tronick SR, Gol RA, Pierce JH, Aaronson SA: Transforming genes of human hematopoietic tumors: Frequent detection of ras-related oncogenes whose activation appears to be independent of tumor phenotype. Proc Natl Acad Sci USA 80:4926–4930, 1983.

    Google Scholar 

  105. Oskarsson M, McClements WL, Blair DG, Maizel JV, Van de Woude GF: Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus. Science 207:1222–1224, 1980.

    Google Scholar 

  106. Reddy EP, Smith MJ, Srinivasan A: Nucleotide sequence of Abelson murine leukemia virus genome: Structural similarity of its transforming gene product to other one gene products with tyrosine-specific kinase activity. Proc Natl Acad Sci USA 80:3623–3627, 1983.

    Google Scholar 

  107. Schwab M, Alitalo K, Varmus HE, Bishop JM: A cellular one gene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature 303:497–501, 1983.

    Google Scholar 

  108. Vennstrom B, Sheiness D, Zabielski J, Bishop JM: Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779, 1982.

    Google Scholar 

  109. Watson DK, Psallidopoulos MC, Samuel KP, Dalla-Favera R, Papas TS: Nucleotide sequence analysis of human c-myc locus, chicken homologue, and myelocytomatosis virus MC29 transforming gene reveals a highly conserved gene product. Proc Natl Acad Sci USA 80:3642–3645, 1983.

    Google Scholar 

  110. Weinberg RA: Oncogenes of spontaneous and chemically induced tumors. Adv Cancer Res 36:149–163, 1982.

    Google Scholar 

  111. Wyke J: From c-src to v-src. Nature 304:491–492, 1983.

    Google Scholar 

  112. Yoshida M, Miyoshi I, Hinuma Y: Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 79:2031–2035, 1982.

    Google Scholar 

  113. Gonda TJ, Bishop JM: Structure and transcription of the cellular homolog(c-myb) of the avian myeloblastosis virus transforming gene (v-myb). J Virol 46: 212–220, 1983.

    Google Scholar 

  114. Klempnauer KH, Gonda TJ, Bishop JM: Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: The architecture of a transduced oncogene. Cell 31:453–463, 1982.

    Google Scholar 

  115. Lenz J, Crowther R, Straceski A, Haseltine W: Nucleotide sequence of the AKV ENV gene. J Virol 42:519–529, 1982.

    Google Scholar 

  116. Reddy EP, Reynolds RK, Watson DK, Schultz RA, Lautenberger J: Nucleotide sequence analysis of the proviral genome of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 80:2500–2504, 1983.

    Google Scholar 

  117. Rushlow KE, Lautenberger JA, Papas TS, Baluda MA, Perbal B, Chirikjian JG, Reddy EP: Nucleotide sequence of the transforming gene of avian myeloblastosis virus. Science 216:1421–1423, 1982.

    Google Scholar 

  118. Rushlow KE, Lautenberger JA, Reddy EP, Souza LM, Baluda MA, Chirikjian JG, Papas TS: Nucleotide sequence analysis of the long terminal repeat of avian myeloblastosis virus and adjacent host sequences. J Virol 42:840–846, 1982.

    Google Scholar 

  119. Srinivasan A, Dunn CY, Yuasa Y, Devare SG, Reddy EP, Aaronson SA: Abelson murine leukemia virus: Structure requirements for transforming gene function. Proc Natl Acad Sci USA 79:5508–5512, 1982.

    Google Scholar 

  120. Van Straaten F, Muller R, Curran T, Van Beveren C, Verma IM: Complete nucleotide sequence of a human c-onc gene: Deduced amino acid sequence of the human c-fos protein. Proc Natl Acad Sci USA 80:3183–3187, 1983.

    Google Scholar 

  121. Callahan R, Drohan W, Tronick S, Schlom J: Detection and cloning of human DNA sequences related to the mouse mammary genome. Proc Natl Acad Sci USA 79: 5503–5507,1982.

    Google Scholar 

  122. Groffen J, Heisterkamp N, Reynolds Jr FH, Stephenson JR: Homology between phosphotyrosine acceptor site of human c-abl and viral oncogene products. Nature 304: 167–169,1983.

    Google Scholar 

  123. Calos MP, Miller JH: Transposable elements. Cell 20: 579–595,1980.

    Google Scholar 

  124. Robinson RA, O'Callaghan DJ: A specific viral DNA sequence is stably integrated in herpesvirus oncogenically transformed cells. Cell 32:569–578, 1983.

    Google Scholar 

  125. Shen-Ong GL, Keath EJ, Piccoli SP, Cole MD: Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31:443–452, 1982.

    Google Scholar 

  126. Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH: The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci USA 79:6777–6781, 1982.

    Google Scholar 

  127. Hayward WS, Neel BG, Astrin SM: Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480; 1981.

    CAS  PubMed  Google Scholar 

  128. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM: Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 23:323–334, 1981.

    Google Scholar 

  129. Muller R, Harmon DJ, Tremblay JM, Cline MJ, Verma IM: Differential expression of cellular oncogenes during pre- and postnatal development of the mouse. Nature 229:640–644,1982.

    Google Scholar 

  130. Goyette M, Petropoulos CJ, Shank PR, Fausto N: Expression of a cellular oncogene during liver regeneration. Science 219:510–512, 1983.

    Google Scholar 

  131. Young HA, Shih TY, Scolnick EM, Rashfeed S, Gardner MB: Different rat-derived transforming retroviruses code for an immunologically related intracellular phosphoprotein. Proc Natl Acad Sci USA 76:3523–3527, 1979.

    Google Scholar 

  132. Barker WC, Dayhoff MO: Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase. Proc Natl Acad Sci USA 79: 2836–2839,1982.

    Google Scholar 

  133. Erikson E, Erikson RL: Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21:829–836, 1980.

    Google Scholar 

  134. Kawai S, Yoshida M, Segawa K, Sugiyama H, Ishizaki R, Toyoshima K: Characterization of Y73, an avian sarcoma virus: A unique transforming gene and its product, a phos phopolyprotein with protein kinase activity. Proc Natl Acad Sci USA 77:6199–6203, 1980.

    Google Scholar 

  135. Richert ND, Blithe DL, Pastan I: Properties of the src kinase purified from Rous sarcoma virus-induced rat tumors. J Biol Chem 257:7143–7150, 1982.

    Google Scholar 

  136. Sen A, Todaro GJ: A murine sarcoma virus-associated protein kinase: Interaction with actin and microtubular protein. Cell 17:347–356, 1979.

    Google Scholar 

  137. Shriver K, Rohrschneider L: Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J Cell Biol 89:525–535, 1981.

    Google Scholar 

  138. Lanks KW, Kasambalides EJ, Chinkers M, Brugge JS: A major cytoplasmic glucose-regulated protein is associated with the Rous sarcoma virus pp60src protein. J Biol Chem 257:8604–8607, 1982.

    Google Scholar 

  139. Laszlo A, Radke K, Chin S, Bissell MJ: Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture. Proc Natl Acad Sci USA 8:6241–6245, 1981.

    Google Scholar 

  140. Collett MS, Brugge JS, Erikson RL: Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product. Cell 15:1363–1369, 1978.

    Google Scholar 

  141. Collett MS, Erikson RL: Protein kinase activity associated with the avian sarcoma virus. Proc Natl Acad Sci USA 75:2021–2024,1978.

    Google Scholar 

  142. Collett MS, Erikson E, Purchio AF, Brugge JS, Erikson RL: A normal cell protein similar in structure and function to the avian sarcoma virus transforming gene product. Proc Natl Acad Sci USA 76:3159–3163, 1979.

    Google Scholar 

  143. Donner P, Bunte T, Owada MK, Moelling K: Biochemical characterization of pp60src-associated protein kinase from avian sarcoma virus Schmidt-Ruppin strain. J Biol Chem 256:8786–8794, 1981.

    Google Scholar 

  144. Krueger JG, Wang E, Goldberg AR: Evidence that the src gene product of Rous sarcoma virus is membrane associated. Virology 101:25–40, 1980.

    Google Scholar 

  145. Shriver K, Rohrschneider L: Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J Cell Biol 89:525–535, 1981.

    Google Scholar 

  146. Jay G, Nomura S, Anderson CW, Khoury G: Identification of the SV40 agnogene product: A DNA binding protein. Nature 291:346–349, 1981.

    Google Scholar 

  147. Lane DP, Hoeffler WK: SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68 000. Nature 288:167–170, 1980.

    Google Scholar 

  148. Deppert W: SV40 T-antigen-related surface antigen: Correlated expression with nuclear T-antigen in cells transformed by an SV40 A-gene mutant. Virology 104:497–501, 1980.

    Google Scholar 

  149. Hurk JVD, Kurstak E: Characterization of Epstein-Barr nuclear antigen (EBNA). I. A new technique for the detection of EBNA or anti-EBNA-antibodies and its applicabili ty to the study of chromosome-EBNA interactiops. J Virol Methods 1:11–26, 1980.

    Google Scholar 

  150. Soule HR, Lanford RE, Butel J: Antigenic and immunogenic characteristics of nuclear and membrane-associated simian virus 40 tumor antigen. J Virol 33:887–901, 1980.

    Google Scholar 

  151. Linzer DI, Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52,1979.

    Google Scholar 

  152. Luka J, Sternas L, Jornrvall H, Klein G, Lerner R: Antibodies of predetermined specificity for the NH2 terminus of a cellular protein p53 react with the native molecule: Evidence for the presence of different p53s. Proc Natl Acad Sci USA 80:1199–1203, 1983.

    Google Scholar 

  153. Mercer WE, Nelson D, DeLeo AB, Old LJ, Baserga R: Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc Natl Acad Sci USA 79:6309–6312, 1982.

    Google Scholar 

  154. Oren M, Levine JJ: Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci USA 80:56–59, 1983.

    Google Scholar 

  155. Takahashi K, Chan PK, Busch RK, Busch H: Identification and purification of Namalwa nuclear RNP antigen 52/5.3. J Cancer Res Clin Oncol 105:67–75, 1983.

    Google Scholar 

  156. Chan P-K, Feyerabend A, Busch RK, Busch H: Identification and partial purification of human tumor nucleolar antigen 54/6.3. Cancer Res 40:3194–3201, 1980.

    Google Scholar 

  157. Crawford LV, Pim DC, Bulbrook RD: Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer 30:403–408, 1982.

    Google Scholar 

  158. Crawford LV, Pim DC, Gurney EG, Goodfellow P, Taylor-Papadimitriou J: Detection of a common feature in several human tumor cell lines — a 53 000-dalton protein. Proc Natl Acad Sci USA 78:41–45, 1981.

    Google Scholar 

  159. Scolnick EM, Papageorge AG, Shih TY: Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc Natl Acad Sci USA 76:5355–5359, 1979.

    Google Scholar 

  160. Shih TY, Stokes PE, Smythers GW, Dhar R, Oroszlan S: Characterization of the phosphorylation sites and the surrounding amino acid sequences of the p21 transforming proteins coded for by the Harvey and Kirsten strains of murine sarcoma viruses. J Biol Chem 257:11767–11773, 1982.

    Google Scholar 

  161. Shih TY, Weeks MO, Gruss P, Dhar R, Oroszlan S, Scolnick EM: Identification of a precursor in the biosynthesis of the p21 transforming protein of Harvey murine sarcoma virus. J Virol 42:253–261, 1982.

    Google Scholar 

  162. Shih TY, Weeks MO, Young HA, Scolnick EM: Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology 96:64–79, 1979.

    Google Scholar 

  163. Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M: Activation of T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765, 1982.

    Google Scholar 

  164. Gay NJ, Walker JE: Homology between human bladder carcinoma oncogene product and mitochondrial ATP-synthetase. Nature 301:262–264, 1983.

    Google Scholar 

  165. Summers WP, Grogan EA, Shedd D, Robert M, Liu CR, Miller G: Stable expression in mouse cells of nuclear neoantigen after transfer of a 3.4-megadalton cloned frag ment of Epstein-Barr virus DNA. Proc Natl Acad Sci USA 79:5688–5692, 1982.

    Google Scholar 

  166. Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV: Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37, 1983.

    Google Scholar 

  167. Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV: Activation of Ki-ras 2 gene in human colon and lung carcinoma by two different point mutations. Nature 304:507–513, 1983.

    Google Scholar 

  168. Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin B: Mutation affecting the 12th amino aid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220:1175–1177, 1983.

    Google Scholar 

  169. Maguire RT, Robins TS, Thorgeirsson SS, Heilman CA: Expression of cellular myc and mos genes in undifferentiated B cell lymphomas of Burkitt and non-Burkitt types. Proc Natl Acad Sci USA 80:1947–1950, 1983.

    Google Scholar 

  170. Adams JM, Gerondakis S, Webb E, Corcoran LM, Cory S: Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sci USA 80:1982–1986, 1983.

    Google Scholar 

  171. Dalla-Favera, R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM: Human c-myc one gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827, 1982.

    Google Scholar 

  172. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Bur kitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841, 1982.

    Google Scholar 

  173. Rowley JD: Consistent chromosome abnormalities in human leukemia and lymphoma. Cancer Invest 3:267–280, 1983.

    Google Scholar 

  174. Rowley JD: Miniseries: Genetics and cancer. Cancer Invest 1:267–280,1983.

    Google Scholar 

  175. Astrin SM, Rothberg PG: Oncogenes and cancer. Cancer Invest 4:355–364, 1983.

    Google Scholar 

  176. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–606, 1983.

    Google Scholar 

  177. Berenblum I: The mechanism of carcinogenesis: A study of the significance of co-carcinogenic action and related phenomena. Cancer Res 1:807–814, 1941.

    Google Scholar 

  178. Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M: Human-tumor-derived cell lines contain common and different transforming genes. Cell 27:467–476, 1981.

    Google Scholar 

  179. Wierenga RK, Hol WGJ: Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302:842–844, 1983.

    Google Scholar 

  180. Brugge JS, Darrow D: Rous sarcoma virus-induced phosphorylation of a 50 000-molecular weight cellular protein. Nature 295:250–253, 1982.

    Google Scholar 

  181. Wong TW, Goldberg AR: Synthetic peptide fragment of src gene product inhibits the src protein kinase and crossreacts immunologically with avian one kinases and cellular phosphoproteins. Proc Natl Acad Sci USA 78:7412–7416, 1981.

    Google Scholar 

  182. Jacobs C, Rubsamen H: Expression of pp60c-src protein kinase in adult and fetal human tissue; high activities in some sarcomas and mammary carcinomas. Cancer Res 43:1696–1702,1983.

    Google Scholar 

  183. Nigg EA, Sefton BM, Hunter T, Walter G, Singer SJ: Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a syn thetic src peptide. Proc Natl Acad Sci USA 79:5322–5326, 1982.

    Google Scholar 

  184. Willingham MC, Pastan I, Shih TY, Scolnick EM: Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopy immunocytochemistry. Cell 19:1005–1014, 1980.

    Google Scholar 

  185. Mitelman F, Levan G: Clustering of aberrations to specific chromosomes in human neoplasms. (IV. A survey of 1871 cs). Hereditas 95:79–139, 1981.

    Google Scholar 

  186. Ramaley JA: Biological clocks and puberty onset. Fed Proc 39:2355–2359, 1980.

    Google Scholar 

  187. Busch H, Gyorkey F, Busch RK, Davis FM, Gyorkey P, Smetana K: A nucleolar antigen found in a broad range of human malignant tumor specimens. Cancer Res 39: 3024–3030,1979.

    Google Scholar 

  188. White RM, Schein PS: Overview of gastric cancer studies in United States. Cancer Treatment Symposia 1:111–117, 1983.

    Google Scholar 

  189. Hanania N, Shaool D, Poncy C, Harel J: Manifold expression of new cellular genes in human lymphoid neoplasia. Proc Natl Acad Sci USA 78:6504–6508, 1981.

    Google Scholar 

  190. Schlag P, Schremi W:Heterogeneity ingrowth pattern and drug sensitivity of primary tumor and metastases in the human tumor colony-forming assay. Cancer Res 42: 4086–4089,1982.

    Google Scholar 

  191. Takami H, Busch FN, Morris HP, Busch H: Comparison of salt-extractable nuclear proteins of regenerating liver, fetal liver, and Morris hepatoma 9618A and 3924A. Cancer Res 39:2096–2105, 1979.

    Google Scholar 

  192. Busch H, Smetana K: The Nucleolus. Academic Press, New York, 1970.

    Google Scholar 

  193. Busch H: The current excitement about gene controls of nucleolar rDNA — Minireview. Life Sci 23:2543–2554, 1978.

    Google Scholar 

  194. Busch H, Daskal Y, Gyorkey F, Smetana K: Silver staining of nucleolar granules in tumor cells. Cancer Res 39: 857–863,1979.

    Google Scholar 

  195. Chan P-K, Frakes RL, Busch RK, Busch H: Isolation and partial characterization of a nuclear antigen (68/ 6.3) from the Namalwa cell line (a Burkitt lymphoma). J Cancer Res Clin Oncol 103:7–16, 1982.

    Google Scholar 

  196. Watt VM, Schimmer BP: Association of a 68000-dalton with adrenocorticotropin-sensitive adenylate cyclase activity in Y1 adrenocortical tumor cells. J Biol Chem 256: 11365–11371,1981.

    Google Scholar 

  197. Croy RG, Pardee AB: Enhanced synthesis and stabilization of Mr 68 000 protein in transformed BALB/c-3T3 cells: Candidate for restriction point control of cell growth. Proc Natl Acad Sci USA 80:4669–4703, 1983.

    Google Scholar 

  198. Puck TT, Erikson RL, Meek WD, Nielson SE: Reverse transformation of vole cells transformed by avian sarcoma virus containing the src gene. J Cell Phys 107:399–412, 1981.

    Google Scholar 

  199. Versteegen RJ, Copeland TD, Oroszlan S: Complete amino acid sequence of the group-specific antigen gene-encoded phosphorylated proteins of mouse leukemia viruses. J Biol Chem 257:3007–3013, 1982.

    Google Scholar 

  200. Bravo R, Celis JE: Updated catalogue of HeLa cell proteins: Percentages and characteristics of the major cell polypeptides labeled with a mixture of 16 14C-labeled amino acids. Clin Chem 28:766–781, 1982.

    Google Scholar 

  201. Bravo R, Celis JE: Human proteins sensitive to neoplastic transformation in cultured epithelial and fibroblast cells. Clin Chem 28:949–952, 1982.

    Google Scholar 

  202. Wojtkowiak Z, Duhl DM, Briggs RC, Hnilica LS, Stein J, Stein GS: A nuclear matrix antigen in HeLa and other human malignant cells. Cancer Res 42:4546–4552, 1982.

    Google Scholar 

  203. Mora PT, Chandrasekaran K, Hoffman JC, McFarland VW: Quantitation of a 55K cellular protein: Similar amount and instability in normal and malignant mouse cells. Cell Biol 2:763–771, 1982.

    Google Scholar 

  204. Prestayko AW, Klomp GR, Schmoll DJ, Busch H: Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry 13:1945–1951, 1974.

    Google Scholar 

  205. Bourbon H, Buglere B, Caizergues-Ferrer M, Amalric F: Processing of a nucleolar protein into ribosomal proteins during preribosome maturation. Proc 8th Nucleolar Conference, Banyuls Ser Mer, France, 1983, p 60.

  206. Maness PF, Perry ME, Levy BT: P1,P4-Di(adenosine-5′)tetraphosphate inhibits phosphorylation of immunoglobulin G by Rous sarcoma virus pp60src. J Biol Chem 258:4055–4058,1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, H. Molecular lesions in cancer. Mol Cell Biochem 61, 111–130 (1984). https://doi.org/10.1007/BF00222490

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222490

Keywords

Navigation