Skip to main content
Log in

Central connections of the pineal organ in the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Central connections of the pineal organ of the three-spined stickleback, Gasterosteus aculeatus L., were studied by the use of horseradish peroxidase (HRP) for anterograde tracing. The pineal tract terminates bilaterally in the habenular nuclei, area praetectalis, dorsal and ventral thalamic nuclei, periventricular hypothalamus, and dorsal tegmentum. Furthermore, fibers were traced into the rostral hypothalamus, tuberal nuclei and deep tegmentum. No pinealopetal connections were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler K (1976) Extraocular photoreception in amphibians. Photochem Photobiol 23:275–298

    Google Scholar 

  • Baggerman B (1957) An experimental study on the timing of breeding and migration in the three-spined stickleback (Gasterosteus aculeatus L). Arch Neerl Zool 12:105–317

    Google Scholar 

  • Borg B (1982) Extraretinal photoreception involved in photoperiodic effects on reproduction in male three-spined sticklebacks, Gasterosteus aculeatus. Gen Comp Endocrinol 47:84–87

    Google Scholar 

  • Borg B, Goos HJTh, Terlou M (1982) LHRH-immunoreactive cells in the brain of the threespined stickleback, Gasterosteus aculeatus L. (Gasterosteidae). Cell Tissue Res 226:695–699

    Google Scholar 

  • Davis RE, Morrell JI, Pfaff DW (1977) Autoradiographic localization of sex steroid-concentrating cells in the brain of the teleost Macropodus opercularis (Osteichtyes: Belontiidae). Gen Comp Endocrinol 33:496–505

    Google Scholar 

  • Distel H, Ebbesson SOE (1981) Habenular projections in the monitor lizard (Varanus benegalensis). Exp Brain Res 43:324–329

    Google Scholar 

  • Dodt E (1963) Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experientia 19:642–643

    Google Scholar 

  • Dodt E, Meissl H (1982) The pineal and parietal organs of lower vertebrates. Experientia 38:996–1000

    Google Scholar 

  • Ebbesson SOE (1972) A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain Behav Evol 6:75–91

    Google Scholar 

  • Ekström P (1982) Retinofugal projections in the eel, Anguilla anguilla L. (Teleostei), visualized by the cobalt filling technique. Cell Tissue Res 225:507–524

    Google Scholar 

  • Eldred WD, Finger TE, Nolte J (1980) Central projections of the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res 211:215–222

    Google Scholar 

  • Engbretson GA, Reiner A, Brecha N (1981) Habenular asymmetry and the central connections of the parietal eye of the lizard. J Comp Neurol 198:155–165

    Google Scholar 

  • Falcon J, Mocquard JP (1979) L'organe pinéal du brochet (Esox lucius L.). III. Voies intrapinéales de conduction des messages photosensoriels. Ann Biol Anim Biochem Biophys 19(4 A): 1043–1061

    Google Scholar 

  • Falcon J, Geffard M, Juillard M-T, Delaage M, Collin J-P (1981) Melatonin-like immunoreactivity in photoreceptor cells. A study in the teleost pineal organ and the concept of photoneuroendocrine cells. Biol Cell 42:65–68

    Google Scholar 

  • Hafeez MA, Zerihun L (1974) Studies on central projections of the pineal nerve tract in rainbow trout, Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tissue Res 154:485–510

    Google Scholar 

  • Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9:789–792

    Google Scholar 

  • Hartwig H-G, Oksche A (1981) Photoneuroendocrine cells and systems: a concept revisited. In: Oksche A, Pévet P (eds) The pineal organ: Photobiology-biochronometry-endocrinology. Elsevier/North-Holland Biomedical Press, pp 49–59

  • Homgren N (1918) Über die Epiphysennerven von Clupea sprattus und harengus. Ark Zool 11, 25:1–5

    Google Scholar 

  • Kah O, Chambolle P, Dubourg P, Dubois MP (1982) Localisation immunocytochimique de la somatostatine dans le cerveau antérieur et l'hypophyse de deux téléostéens, le Cyprin (Carassius auratus) et Gambusia sp. CR Acad Sci, Ser D 294:519–524

    Google Scholar 

  • Kappers JA (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res 10:87–153

    Google Scholar 

  • Kemali M, Guglielmotti V (1982) The connections of the frog interpeduncular nucleus (ITP) demonstrated by horseradish peroxidase (HRP). Exp Brain Res 45:349–356

    Google Scholar 

  • Kemali M, Guglielmotti V, Gioffre D (1980) Neuroanatomical identification of the frog habenular connections using peroxidase (HRP). Exp Brain Res 38:341–347

    Google Scholar 

  • Kim YS, Stumpf WE, Sar M (1978) Topography of estrogen target cells in the forebrain of goldfish, Carassius auratus. J Comp Neurol 182:611–620

    Google Scholar 

  • Kitai ST, Bishop GA (1981) Horseradish peroxidase. Intracellular staining of neurons. In: Heimer L, Robards MJ (eds) Neuroanatomical tract-tracing methods. Plenum Press, New York and London. pp 275–276

    Google Scholar 

  • Korf H-W (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489

    Google Scholar 

  • Korf H-W, Wagner U (1980) Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell Tissue Res 209:505–510

    Google Scholar 

  • Korf H-W, Wagner U (1981) Nervous connections of the parietal eye in adult Lacerta s. sicula Rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res 219:567–583

    Google Scholar 

  • Korf H-W, Zimmerman NH, Oksche A (1982) Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res 222:243–260

    Google Scholar 

  • Kozlowski GP (1982) Ventricular route hypothesis and peptide-containing structures of the cerebroventricular system. Front Horm Res 9:105–118

    Google Scholar 

  • Kristensson K, Olsson Y (1976) Retrograde transport of horseradish peroxidase in transected axons. 3. Entry into injured axons and subsequent localization in perikaryon. Brain Res 115:201–213

    Google Scholar 

  • Matsuura T, Herwig HJ (1981) Histochemical and ultrastructural study of the nervous elements in the pineal organ of the eel, Anguilla anguilla. Cell Tissue Res 216:545–555

    Google Scholar 

  • Matsuura T, Kamer JC van de, Sano Y (1979) Studies of AChE containing neurons in the pineal body of the eel, Anguilla anguilla, with special reference to the pineal tract. Acta Histochem Cytochem 12:601

    Google Scholar 

  • Mesulam MM (1982) Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways — axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam MM (ed) Tracing neural connections with horseradish peroxidase. IBRO handbook series: Methods in the neurosciences. John Wiley & Sons, Chichester New York Toronto Singapore, pp 1–152

    Google Scholar 

  • Nürnberger F, Korf H-W (1981) Oxytocinand vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog, Erinaceus europaeus. L. Cell Tissue Res 220:87–97

    Google Scholar 

  • Oksche A, Ueck M, Rüdeberg C (1971) Comparative ultrastructural studies of sensory and secretory elements in pineal organs. In: Heller H, Lederis K (eds) Subcellular organization and function in endocrine tissues. Mem Soc Endocrin 19. Cambridge University Press, London New York, pp 7–25

    Google Scholar 

  • Peter RE, Gill VE (1975) A stereotactic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102

    Google Scholar 

  • Pinganaud G, Clairambault P (1979) The visual system of the trout Salmo irideus Gibb. A degeneration and radioautographic study. J Hirnforsch 20:413–431

    Google Scholar 

  • Rodríguez EM, Peña P, Rodríguez S, Aguado LI, Hein S (1982) Evidence for the participation of the CSF and periventricular structures in certain neuroendocrine mechanisms. Front Horm Res 9:142–158

    Google Scholar 

  • Sathyanesan AG, Sastry VKS (1982) Pineal innervation of the third ventricular ependyma in the teleost, Puntius sophore (Ham.). J Neural Transm 53:187–192

    Google Scholar 

  • Schnitzlein HN (1962) The habenula and the dorsal thalamus of some teleosts. J Comp Neurol 118:225–267

    Google Scholar 

  • Spreafico R, Cheema S, Ellis Jr LC, Rustioni A (1982) On “Comparison of horseradish peroxidase visualization methods”. J Histochem Cytochem 30:487–488

    Google Scholar 

  • Sutherland RJ (1982) The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6:1–13

    Google Scholar 

  • Ueck M (1979) Innervation of the vertebrate pineal. Prog Brain Res 52:45–88

    Google Scholar 

  • Veen Th van, Ekström P, Borg B, Møller M (1980) The pineal complex of the three-spined stickleback, Gasterosteus aculeatus L. A light-, electron microscopic and fluorescence histochemical investigation. Cell Tissue Res 209:11–28

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1973) CSF contacting axons and synapses in the lumen of the pineal organ. Z Zellforsch 144:139–152

    Google Scholar 

  • Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982) Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–369

    Google Scholar 

  • Vollrath L (1981) The pineal organ. Handbuch der mikroskopischen Anatomie des Menschen VI/7. Springer-Verlag, Berlin Heidelberg New York, pp 1–665

    Google Scholar 

  • Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z Zellforsch 145:287–298

    Google Scholar 

  • Warr WB, de Olmos JS, Heimer L (1981) Horseradish peroxidase. The basic procedure. In: Heimer L, Robards MJ (eds) Neuroanatomical tract-tracing methods. Plenum Press. New York and London, pp 207–262

    Google Scholar 

  • Young JZ (1933) The preparation of isotonic solutions for use in experiments with fish. Publ Staz Zool Napoli 12:425–431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Swedish Natural Science Research Council (no. 4644-103) and the Royal Physiographic Society in Lund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekström, P., van Veen, T. Central connections of the pineal organ in the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Cell Tissue Res. 232, 141–155 (1983). https://doi.org/10.1007/BF00222380

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222380

Key words

Navigation