Skip to main content
Log in

Experimental study on the haematogenous origin of multinucleate osteoclasts in the rat

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

When the resorption zones of the distal femoral and proximal tibial epiphyseal plates of rats are examined with the electron microscope, numerous macrophages can be seen surrounding degenerated chondrocytes. Macrophages are also found in the neighbourhood of the invading sinusoids and in close proximity to multinucleate osteoclasts. Cell fusion, however, could not be observed. Repeated transfusions of female leukocytes to isohistogeneic growing male rats caused an increase in the number of nuclei containing a Barr body in the osteoclasts of the males. The result suggests that leukocytes — of which only the monocytes come in question — are the source of multinucleate osteoclasts in endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allyn PG, Minkin C (1976) Origin of the osteoclast: studies with a quail-mouse chimera. J Dent Res 55 B:219

    Google Scholar 

  • Andersen H, Matthiessen ME (1966) The histiocyte in human fetal tissues: its morphology, cytochemistry, origin, function, and fate. Z Zellforsch 72:193–211

    Google Scholar 

  • Anderson CE, Parker J (1966) Invasion and resorption in enchondral ossification. An electron microscopic study. J Bone Joint Surg 48 A: 899–914

    Google Scholar 

  • Ash P, Loutit JF, Townsend KMS (1980) Osteoclasts derived from haemopoietic stem cells. Nature 283:669–670

    Google Scholar 

  • Castro N de, Silva Sasso W da, Goes MR de (1956) Sex determination in rats (Rattus norvegicus var. albinus) through the ameloblasts of the dental germ. Nature 178:1059–1060

    Google Scholar 

  • Chambers TJ (1979) Phagocytosis and trypsin-resistant glass adhesion by osteoclasts in culture. J Pathol 127:55–60

    Google Scholar 

  • Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH, Kim TH, Nesbit ME, Ramsey NKC, Warkentin PI, Teitelbaum SL, Kahn AJ, Brown DM (1980) Successful bone-marrow transplantation for infantile malignant osteopetrosis. New Engl J Med 302:701–708

    Google Scholar 

  • Fischman DA, Hay ED (1962) Origin of osteoclasts from mononuclear leukocytes in regenerating newt limbs. Anat Rec 143:329–337

    Google Scholar 

  • Göthlin G, Ericsson JLE (1976) The osteoclast. Review of ultrastructure, origin and structurefunction relationship. Clin Orthop 120:201–231

    Google Scholar 

  • Hall BK (1975) The origin and fate of osteoclasts. Anat Rec 183:1–13

    Google Scholar 

  • Haythorn SR (1929) Multinucleated giant cells with particular reference to the foreign body giant cell. Arch Pathol Lab Med 7:651–713

    Google Scholar 

  • Hinrichsen K, Gothe HD (1958) Morphologische und statistische Untersuchungen an Zellkernen von Ratten und Mäusen zur Frage einer cytologischen Geschlechtsdiagnostik. Z Zellforsch 48:429–449

    Google Scholar 

  • Jee WSS, Nolan PD (1963) Origin of osteoclasts from the fusion of phagocytes. Nature 200:225–226

    Google Scholar 

  • Jones SJ, Hogg NM, Shapiro IM, Slusarenko M, Boyde A (1981) Cells with Fc receptors in the cell layer next to osteoblasts and osteoclasts on bone. Metabolic Bone Dis Relat Res 2:357–362

    Google Scholar 

  • Jotereau FV, Le Douarin NM (1978) The developmental relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev Biol 63:253–265

    Google Scholar 

  • Kahn AJ, Simmons DJ, Krukowski M (1981) Osteoclast precursor cells are present in the blood of preossification chick embryos. Dev Biol 84:230–234

    Google Scholar 

  • Kember NF (1960) Cell division in endochondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg 428:824–839

    Google Scholar 

  • Kimmel DB, Jee WSS (1980) Bone cell kinetics during longitudinal bone growth in the rat. Calcif Tissue Int 32:123–133

    Google Scholar 

  • Knese KH, Knoop AM (1961) Elektronenmikroskopische Beobachtungen über die Zellen in der Eröffnungszone des Epiphysenknorpels. Z Zellforsch 54:1–38

    Google Scholar 

  • Ko JS, Bernard GW (1981) Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone. Am J Anat 161: 415–425

    Google Scholar 

  • Kölliker A (1873) Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. Vogel, Leipzig

    Google Scholar 

  • Leder LD (1967) Der Blutmonocyt. Exp Med Pathol Klin 23:1–293

    Google Scholar 

  • Mariano M, Spector WG (1974) The formation and properties of macrophage polykaryons (inflammatory giant cells). J Pathol 113:1–19

    Google Scholar 

  • Marks SC, Walker DG (1981) The hematogenous origin of osteoclasts: Experimental evidence from osteopetrotic (microphthalmic) mice treated with spleen cells from beige mouse donors. Am J Anat 161:1–10

    Google Scholar 

  • Owen M (1970) The origin of bone cells. Int Rev Cytol 28:213–238

    Google Scholar 

  • Rhee HJ van der, Burgh-de Winter CPM van der, Daems WTh (1979a) The differentiation of monocytes into macrophages, epitheloid cells, and multinucleated giant cells in subcutaneous granulomas. I. Fine structure. Cell Tissue Res 197:355–379

    Google Scholar 

  • Rhee HJ van der, Burgh-de Winter CPM van der, Daems WTh (1979b) The differentiation of monocytes into macrophages, epithelioid cells, and multinucleated giant cells in subcutaneous granulomas. II. Peroxidatic activity. Cell Tissue Res 197:379–396

    Google Scholar 

  • Rohr H (1964) Zur Entstehung der mehrkernigen Osteoklasten nach Parathormongabe. Autoradiographische Untersuchungen mit H3-Thymidin. Klin Wschr 42:1209–1212

    Google Scholar 

  • Schenk RK, Spiro D, Wiener J (1967) Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol 34:275–291

    Google Scholar 

  • Schmidt D (1974) Blutvolumen. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Scott BL (1967) Thymidine-3H electron microscope radiography of osteogenic cells in the fetal rat. J Cell Biol 35:115–126

    Google Scholar 

  • Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O (1981) Generation of osteoclasts in vitro. J Cell Sci 47:127–137

    Google Scholar 

  • Tinkler SMB, Williams DM, Johnson NW (1981 a) Osteoclast formation in response to intraperitoneal injection of 1α-hydroxycholecalciferol in mice. J Anat 133:91–97

    Google Scholar 

  • Tinkler SMB, Linder JE, Williams DM, Johnson NW (1981b) Formation of osteoclasts from blood monocytes during 1α-OH Vit D-stimulated bone resorption in mice. J Anat 133:389–396

    Google Scholar 

  • Tonna EA (1960) Osteoclasts and the aging skeleton: a cytological, cytochemical and autoradiographic study. Anat Rec 137: 251–270

    Google Scholar 

  • Tonna EA (1963) Reply to Jee WSS and Nolan PD (1963). Nature 200:226–227

    Google Scholar 

  • Walker DG (1973) Osteopetrosis cured by temporary parabiosis. Science 180:875

    Google Scholar 

  • Young RW (1962) Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol 14:357–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanka, P., Bargsten, G. Experimental study on the haematogenous origin of multinucleate osteoclasts in the rat. Cell Tissue Res. 233, 125–132 (1983). https://doi.org/10.1007/BF00222237

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222237

Key words

Navigation