Skip to main content
Log in

The morphology of the Martian surface

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Most of the southern hemisphere of Mars is densely cratered and stands 1–3 km above the topographic datum. The northern hemisphere is more sparsely cratered and elevations are generally below the datum. A broad rise, the Tharsis bulge, centered at 14° S, 101° W, is 8000 km across and 10 km above the datum at its summit. The densely cratered terrain has two main components; very ancient crust, nearly saturated with large craters, and younger intercrater plains. In many areas the older unit is fractured and extensively dissected by small channels. The younger intercrater plains are distinctly layered in places and less dissected, less fractured, and less cratered. Both units probably date from very early in the planet's history. Cratered plains cover much of the northern hemisphere and are highly variegated. Those around the large volcanoes are covered with numerous volcanic flows whereas in other areas the plains are featureless except for craters and lunar mare-like ridges. Between 40° N and 60° N the plains are complex with various kinds of striped and patterned ground, low escarpments, and isolated irregularly shaped mesas. Their peculiar morphology has been attributed, in part, to the repeated deposition and removal of volatile-rich debris layers. Along the boundary between the northern plains and the densely cratered terrain to the south, the plains and cratered terrain complexly inter-finger. The old terrain forms the high ground and appears to have undergone mass wasting on a large scale. In several areas, particularly south of Chryse Planitia, the old, cratered surface has collapsed to form chaotic terrain. Large channels, tens of kilometers wide and hundreds of kilometers long, with numerous characteristics suggestive of catastrophic flooding, commonly emerge from the chaotic areas. Much of the area between 50° W and 180° W and 50° N and 50° S is cut by fractures radial to the center of the Tharsis bulge. The equatorial canyon system, Valles Marineris, is radial to the bulge and appears to have formed largely by faulting along the radial fractures, although it has also been extensively modified by various mass wasting and fluvial processes. Most but not all volcanoes are in the Tharsis and Elysium regions. The largest resemble terrestrial shield volcanoes except for scale; the edifices, flow features and calderas are all far larger than their terrestrial counterparts. Most impact craters on Mars are surrounded by layers of ejecta, each with a distil ridge. This unique morphology coupled with other surface characteristics suggests large amounts of ground ice. Layered deposits at both poles appear to be relatively young, volatile-rich, aeolian deposits. The north pole is also surrounded by a continuous belt of dunes several tens of kilometers across. In most other places, aeolian modification of the surface at a scale of several tens of meters appears slight despite annual global dust storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allèsre, C. J., Courtillot, V. E., and Matteur, M.: 1974, Trans. Am. Geophys. Union (EOS) 55, 341.

    Google Scholar 

  • Anderson, D. W., Gaffney, E. S., and Low, P. F.: 1967, Science 155, 319.

    Google Scholar 

  • Anderson, D. H., Gatto, L. W., and Usolini, F.: 1973, ‘An Examination of Mariner 6 and 7 Imagery for Evidence of Permafrost Terrain on Mars’, in Permafrost, The North American Contribution to the Second International Conference, pp. 449–508, Natl. Acad. Sci., Washington, D.C.

    Google Scholar 

  • Arvidson, R. E.: 1972, Geol. Soc. Am. Bull. 83, 1503.

    Google Scholar 

  • Arvidson, R. E.: 1974a, Icarus 21, 12.

    Google Scholar 

  • Arvidson, R. E.: 1974b, Icarus 22, 264.

    Google Scholar 

  • Arvidson, R. E.: 1978, ‘Viking Implications for Martian Aeolian Dynamics’, NASA Tech. Memo 79729, pp. 238–240.

  • Arvidson, R. E., Carusi, A., Coradini, A., Coradini, M., Fulchisnoni, M., Federico, C., Funicello, R., and Salomone, M.: 1976, Icarus 27, 503.

    Google Scholar 

  • Bagnold, R. A.: 1941, The Physics of Blown Sand and Desert Dunes, Methuen and Co., London, 265 pp.

    Google Scholar 

  • Baker, V. R.: 1977, ‘Viking-Slashed at the Martian Scabland Problem’, NASA Tech. Memo. TM-X-3511, pp. 169–172.

  • Baker, V. R. and Milton, D. J.: 1974, Icarus 23, 27.

    Google Scholar 

  • Ballou, E. V., Wood, P. C., Wydeven, T., Lehwalt, M. E., and Mack, R. E.: 1978, Nature 271, 644.

    Google Scholar 

  • Belcher, D., Veverka, J., and Sasan, C.: 1971, Icarus 15, 241.

    Google Scholar 

  • Blasius K. R.: 1976a, ‘Topical Studies of the Geology of the Tharsis Region of Mars’, Calif. Inst. Tech., Ph.D., Thesis, 85 pp.

  • Blasius, K. R.: 1976b, Icarus 29, 343.

    Google Scholar 

  • Blasius, K. R., Cutts, J. A., Guest, J. E., and Masursky, H.: 1977, J. Geophys. Res. 82, 4067.

    Google Scholar 

  • Blasius, K. R., Cutts, J. A., and Roberts, R. J.: 1978, ‘Large Scale Erosive Flows Associated with Chryse Planitia, Mars: Source and Sink Relationships’, NASA Tech. Memo. 79729, pp. 275–276.

  • Boyce, J. M. and Roddy, D. J.: 1978, ‘Martian Rampart Craters: Crater Processes That May Affect Diameter-Frequency Distributions’, NASA Tech. Memo 79729, pp. 162–165.

  • Bretz, J. H.: 1969, J. Geology 17, 505.

    Google Scholar 

  • Carr, M. H.: 1973, J. Geophys. Res. 78, 4049.

    Google Scholar 

  • Carr, M. H.: 1974a, J. Geophys. Res. 79, 3943.

    Google Scholar 

  • Carr, M. H.: 1974b, Icarus 22, 1.

    Google Scholar 

  • Carr, M. H.: 1975, Sci. Am. 2344, 32.

    Google Scholar 

  • Carr, M. H.: 1979, J. Geophys. Res. 84, 2995.

    Google Scholar 

  • Carr, M. H. and Schaber, G. G.: 1977, J. Geophys. Res. 82, 4039.

    Google Scholar 

  • Carr, M. H., Masursky, H., and Saunders, R. S.: 1973, J. Geophys. Res. 78, 4031.

    Google Scholar 

  • Carr, M. H., Blasius, K. R., Greeley, R., Guest, J. E., and Murray, J. E.: 1977, J. Geophys. Res. 82, 3985.

    Google Scholar 

  • Carr, M. H., Masursky, H., Baum, W. A., Blasius, K. R., Briggs, G. A., Cutts, J. A., Duxbury, T., Greeley, R., Guest, J. E., Smith, B. A., Soderblom, L. A., Veverka, J., and Wellman, J. B.: 1976, Science 193, 766.

    Google Scholar 

  • Chapman, C. R.: 1974, Icarus 22, 264.

    Google Scholar 

  • Chapman, C. R., Pollack, J. B., and Sagan, C.: 1969, Astron. J. 74, 1039.

    Google Scholar 

  • Christenson, E. J.: 1975, J. Geophys. Res. 80, 2909.

    Google Scholar 

  • Cintala, M. J., Head, J. W., and Mutch, T. A.: 1975, Trans. Am. Geophys. Union (EOS) 56, 389.

    Google Scholar 

  • Clark, B. R. and Mullin, R. P.: 1976, Icarus 27, 215.

    Google Scholar 

  • Collins: S. A.: 1971, ‘The Mariner 6 and 7 Pictures of Mars’, NASA SP-263, 159 pp.

  • Courtillot, V. C., Allegre, C. J., and Matteur, M.: 1975, Earth Planetary Sci. Letters 25, 279.

    Google Scholar 

  • Crumpler, L. S. and Aubele, J. C.: 1978, Icarus 34, 496.

    Google Scholar 

  • Cutts, J. A.: 1973a, J. Geophys. Res. 78, 4231.

    Google Scholar 

  • Cutts, J. A.: 1973b, J. Geophys. Res. 78, 4211.

    Google Scholar 

  • Cutts, J. A. and Michalsky, W. L.: 1974, ‘Mars: an New Type of Landscape Fealure in the South Polar Region’ (abs.), Am. Geophys. Union mtg., San Francisco.

  • Cutts, J. A. and Smith, R. S. U.: 1973, J. Geophys. Res. 78, 4139.

    Google Scholar 

  • Cutts, J. A., Blasius, K. R., Briggs, G. A., Carr, M. H., Greeley, R., and Masusky, H.: 1976, Science 194, 1329.

    Google Scholar 

  • Cutts, J. A., Roberts, W. J., and Blasius, K. R.: 1978a, Lunar and Planetary Science IX, Pt. 1, 20.

    Google Scholar 

  • Cutts, J. A., RoberTs, W. J., and Blasius, K. R.: 1978b, Lunar and Planetary Science IX, Pt. 1, 206.

    Google Scholar 

  • Dial, A. L.: 1978, ‘The Viking 1 Landing Site Crater Diameter-Frequency Distribution’, NASA Tech. Mem. 79729, pp. 179–181.

  • Dzurisin, D. and Blasius, K. R.: 1975, J. Geophys. Res. 82, 4225.

    Google Scholar 

  • Gatto, L. W. and Anderson, D. M.: 1975, Science 188, 255.

    Google Scholar 

  • Greeley, R.: 1978, ‘Mars: A Model for the Formation of Dunes and Related Structures’, NASA Tech. Mem. 79729, pp. 244–245.

  • Greeley, R., Iverson, J. D., Pollack, J. B., Udovich, N., and White, B.: 1974, Science 183, 847.

    Google Scholar 

  • Greeley, R., Theilis, E., Guest, J. E., Carr, M. H., Masursky, H., and Cutts, J. A.: 1977, J. Geophys. Res. 82, 4093.

    Google Scholar 

  • Guest, J. E. and Butterworth, P. S.: 1977, J. Geophys. Res. 82, 4111.

    Google Scholar 

  • Harp, E. L.: 1974, ‘Fracture Systems and Tectonics on Mars’, Unpublished Ph.D. Thesis, University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • Harris, S. A.: 1977, J. Geophys. Res. 82, 3099.

    Google Scholar 

  • Hartmann, W. K.: 1971a, Icarus 15, 396.

    Google Scholar 

  • Hartmann, W. K.: 1971b, Icarus 15, 410.

    Google Scholar 

  • Hartmann, W. K.: 1973, Icarus 19, 550.

    Google Scholar 

  • Hartmann, W. K.: 1974a, J. Geophys. Res. 79, 3951.

    Google Scholar 

  • Hartmann, W. K.: 1974b, Icarus 22, 301.

    Google Scholar 

  • Head, J. W., Settle, M., and Wood, C. A.: 1976, Nature 263, 667.

    Google Scholar 

  • Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E.: 1977, J. Geophys. Res. 82, 4559.

    Google Scholar 

  • Hodges, C. A. and Moore, H. J.: 1978, ‘The Subglacial Birth of Olympus Mons’, Abstracts with Programs, Geol. Soc. America 91st Annual meeting, Vol. 10, p. 422.

    Google Scholar 

  • Hord, C. W., Barth, C. A., Steward, A. I., and Lane, A. L.: 1972, Icarus 17, 443.

    Google Scholar 

  • Howard, A. D.: 1978, Icarus 34, 581.

    Google Scholar 

  • Ingersoll, A. P.: 1974, J. Geophys. Res. 79, 3403.

    Google Scholar 

  • Iverson, J. D., Greeley, R., White, B. R., and Pollack, J. B.: 1976, J. Geophys. Res. 81, 4846.

    Google Scholar 

  • Jones, K. L.: 1974, J. Geophys. Res. 79, 3917.

    Google Scholar 

  • Kieffer, H. H., Christensen, P. R., Martin, T. Z., Miner, E. D., and Palluconi, F. D.: 1976, Science 194, 1346.

    Google Scholar 

  • Kieffer, H. H., Martin, T. Z., Peterfreund, A. A. R., and Jakosky, B. M.: 1977, J. Geophys. Res. 82, 4249.

    Google Scholar 

  • King, J. S. and Riehle, J. R.: 1974, Icarus 23, 300.

    Google Scholar 

  • Kliore, A., Cain, D. L., Levy, G. S., Eshleman, V. R., Fjelbo, G., and Drake, F. D.: 1965, Science 149, 1243.

    Google Scholar 

  • Leighton, R. B. and Murray, B. C.: 1966, Science 153, 136.

    Google Scholar 

  • Leighton, R. B., Murray, B. C., Sharp, R. P., Allen, J. D., and Sloan, R. K.: 1965, Science 149, 627.

    Google Scholar 

  • Leighton, R. B., Horowitz, N. H., Murray, B. C., Sharp, R. P., Herriman, A. G., Young, A. T., Smith, B. A., Davies, M. E., and Leovy, C. G.: 1969a, Science 166, 49.

    Google Scholar 

  • Leighton, R. B., Horowitz, N. H., Murray, B. C., Sharp, R. P., Herriman, A. G., Young, A. T., Smith, B. A., Davies, M. E., and Leovy, C. G.: 1969b, ‘Television Observations from Mariner 6 and 7. Mariner-Mars 1969, A Preliminary Report’, NASA Sp. Publ. SP-225.

  • Lucchitta, B. K.: 1978a, Geol. Soc. Am. Bull. 89, 1601.

    Google Scholar 

  • Lucchitta, B. K.: 1978b, J. Res., U.S. Geological Survey 6, 651.

    Google Scholar 

  • McCauley, J. F.: 1973, J. Geophys. Res. 78, 4123.

    Google Scholar 

  • McCauley, J. F.: 1979, ‘Geologic Map of the Coprates Quadrangle of Mars’, U.S. Geological Survey, Misc. Inv. Map I-897.

  • McCauley, J. F., Carr, M. H., Cutts, J. A., Hartmann, W. K., Masursky, H., Milton, D. J., Sharp, R. P., and Wilhelms, D. E.: 1972, Icarus 17, 289.

    Google Scholar 

  • Malin, M. C.: 1976, ‘Nature and Origin of Intercrater Plains on Mars’, Unpublished Ph.D. Thesis, Calif. Inst. Tech., Pasadena, Calif., 176 pp.

    Google Scholar 

  • Malin, M. C.: 1977, Geol. Soc. Am. Bull. 84, 908.

    Google Scholar 

  • Masson, P.: 1977, Icarus 30, 49.

    Google Scholar 

  • Masursky, H.: 1973, J. Geophys. Res. 78, 4037.

    Google Scholar 

  • Masursky, H. and Crabill, N. L.: 1976, Science 194, 62.

    Google Scholar 

  • Masursky, H., Boyce, J. M., Dial, A. L., Schaber, G. G., and Strobell, M. E.: 1977, J. Geophys. Res. 82, 4016.

    Google Scholar 

  • Milton, D. J.: 1973, J. Geophys. Res. 78, 4037.

    Google Scholar 

  • Milton, D. J.: 1974, Science 183, 654.

    Google Scholar 

  • Murray, B. C. and Malin, M. C.: 1973, Science 179, 997.

    Google Scholar 

  • Murray, B. C., Soderblom, L. A., Sharp, R. P., and Cutts, J. A.: 1971, J. Geophys. Res. 76, 313.

    Google Scholar 

  • Murray, B. C., Soderblom, L. A., Cutts, J. A., Sharp, R. P., Milton, D. J., and Leighton, R. B.: 1972, Icarus 17, 328.

    Google Scholar 

  • Mutch, T. A. and Head, J. W.: 1975, Rev. Geophys. Space Phys. 3, 41.

    Google Scholar 

  • Mutch, T. A. and Saunders, R. S.: 1976, Space Sci. Rev. 19, 3.

    Google Scholar 

  • Mutch, T. A., Arvidson, R. E., Head, J. W., Jones, K. L., and Saunders, R. S.: 1976, The Geology of Mars, Princeton Univ. Press, Princeton, N. J.

    Google Scholar 

  • Mutch, T. A., Arvidson, R. E., Binder, A. B., Guiness, E. A., and Morris, E. C.: 1977, J. Geophys. Res. 82, 4452.

    Google Scholar 

  • Pieri, D.: 1976, Icarus 27, 25.

    Google Scholar 

  • Neukum, G. and Wise, D. U.: 1976, Science 194, 1381.

    Google Scholar 

  • Nummedal, D.: 1976, ‘Fluvial Erosion on Mars’, Proc. Colloquium on Water in Planetary Regoliths., Hanover, N. H., pp. 47–54.

  • Nummedal, D.: 1978, ‘The Role of Liquefaction in Channel Development on Mars’, NASA Tech. Mem. 79729, pp. 257–259.

  • Öpik, E. J.: 1966, Science 153, 255.

    Google Scholar 

  • Oberbeck, V. R.: 1975, Rev. Geophys. Space Sci. 13, 337.

    Google Scholar 

  • Oberbeck, V. R., Morrison, R. H., and Hortz, F.: 1975, The Moon 13, 9.

    Google Scholar 

  • Reimers, C. E. and Komar, P. D.: 1977, Icarus 39, 88.

    Google Scholar 

  • Sagan, C., Veverka, J., Fox, P., Dubisch, R., Lederberg, J., Levinthal, E., Quam, L., Tucker, R., Pollack, J. B., and Smith, B. A.: 1972, Icarus 17, 346.

    Google Scholar 

  • Sagan, C., Veverka, J., Fox, P., Dubisch, R., French, R., Gierasch, P., Quam, L., Lederberg, J., Levinthal, E., Tucker, R., Eross, B., and Pollack, J. B.: 1973a, J. Geophys. Res. 78, 4163.

    Google Scholar 

  • Sagan, C., Toon, O. B., and Gierasch, P. J.: 1973b, Science 181, 1045.

    Google Scholar 

  • Schonfeld, E.: 1977, Eight Lunar Sci. Conf. Abstracts, Pt. II, pp. 843–845.

  • Schumm, S. A.: 1974, Icarus 22, 371.

    Google Scholar 

  • Scott, D. H. and Carr, M. H.: 1978, ‘Geologic map of Mars’, U.S. Geol. Survey, Misc. Inv. Map I-1083.

  • Sengor, A. M. C. and Jones, E. C.: 1975, ‘A New Interpretation of Martian Tectonics with Special Reference to the Tharsis Region’, (abstract), Geol. Soc. America, Abstract with Program, Vol. 7, p. 1264.

    Google Scholar 

  • Sharp, R. P.: 1973a, J. Geophys. Res. 78, 4073.

    Google Scholar 

  • Sharp, R. P.: 1973b, J. Geophys. Res. 78, 4063.

    Google Scholar 

  • Sharp, R. P.: 1973c, J. Geophys. Res. 78, 4222.

    Google Scholar 

  • Sharp, R. P.: 1974, J. Glaciology 13, 173.

    Google Scholar 

  • Sharp, R. P. and Malin, M. C.: 1975, Geol. Soc. Am. Bull. 86, 593.

    Google Scholar 

  • Sharp, R. P., Soderblom, L. A., Murray, B. C., and Cutts, J. A.: 1971, J. Geophys. Res. 76, 331.

    Google Scholar 

  • Sinton, W. M. and Strong, J.: 1960, Astrophys. J. 131, 459.

    Google Scholar 

  • Soderblom, L.: 1976, Science 194, 97.

    Google Scholar 

  • Soderblom, L. S., Kriedler, T. J., and Masursky, H.: 1973, J. Geophys. Res. 78, 4117.

    Google Scholar 

  • Soderblom, L. A., Condit, C. D., West, R. A., Herman, B. M., and Kriedler, T. J.: 1974, Icarus 22, 239.

    Google Scholar 

  • Sqyres, S. W.: 1978, Icarus 34, 600.

    Google Scholar 

  • U.S. Geological Survey: 1976, ‘Topographic Map of Mars’ U.S. Geol. Survey, Misc. Inv. Map I-961.

  • Walker, G. P. L.: 1973, Phil. Trans. Roy. Soc. London A274, 107.

    Google Scholar 

  • Ward, W. R.: 1973, Science 181, 260.

    Google Scholar 

  • Ward, W. R.: 1974, J. Geophys. Res. 79, 3933.

    Google Scholar 

  • West, M.: 1974, Icarus 21, 1.

    Google Scholar 

  • Wilhelms, D. E.: 1973, J. Geophys. Res. 78, 4084.

    Google Scholar 

  • Wise, D. U.: 1974, Trans. Am. Geophys. Union (EOS) 55, 341.

    Google Scholar 

  • Wise, D. U.: 1975, ‘Faulting and Stress Trajectories near Alba Volcano Northern Tharsis Ridge of Mars’, (Abstract), Proc. Int. Colloquium of Planetary Geology, Rome, pp. 430–433.

  • Wise, D. U.: 1977, ‘Timing of Deformational Events in the Northern Tharsis Bulge of Mars’, NASA Tech. Mem. X-2511, pp. 59–60.

  • Wise, D. U., Golombek, M. P., and McGill, G. E.: 1979, ‘Tharsis Province of Mars: Geologic Sequence, Geometry and a Deformation Mechanism’, Icarus 38, 456.

    Google Scholar 

  • Wu, S. S. C.: 1978, Icarus 33, 417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, M.H. The morphology of the Martian surface. Space Sci Rev 25, 231–284 (1980). https://doi.org/10.1007/BF00221929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221929

Keywords

Navigation